A5 Family
Motor Specifications

Special Order Product
200 V MHME 5.0 kW [High inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P. 183) This brake wift be released when it is energized. (Do not use this for braking the motor in motion.) | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 24.5 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Notele Exciting current (DC) (A) Releasing voltage (DC) (V) Exiting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

- For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.45. * 1 Motor specifications: \square

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake
<Cautions>
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Environmental Conditions

| Item | Conditions |
| :--- | :---: | :---: |
| Ambient temperature ${ }^{* 1}$ | |

*1 Ambient temperature to be measured at 5 cm away from the motor.
*2 Permissible temperature for short duration such as transportation.
*3 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5). Do not use these motors in applica tion where water proof performance is required such as continuous wash-down operation.
Air condition is applied when the connector mounting screw are tightened to the recommended tightening torque.
Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew

<Note>

Initial setup of rotational direction:
positive $=\mathrm{CCW}$ and negative $=\mathrm{CW}$.
Pay an extra attention
Positive direction
(CCW)
(CW)

Notes on [Motor specification] page

Note) 1. [At AC100 V of power voltage]
Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
-When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
Power supply voltage is AC 115 V (at 100 V of the main voltage).
If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/115) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

[At AC200 V of power voltage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia
When the motor speed exceeds the rated speed, regenerative brake frequency is in invers proportion to the square of (running speed/rated speed).
- Power supply voltage is AC230 V (at 200 V of the main voltage).

If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage $/ 230$) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

A5 Family

[At AC400 V of power voltage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
- When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
- Power supply voltage is AC460 V (at 400 V of the main voltage).

If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/460) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer
Note) 2. If the effective torque is within the rated torque, there is no limit in generative brake
Note) 3. Consult us or a dealer if the load moment of inertia exceeds the specified value.
Note) 4. Releasing time values represent the ones with DC-cutoff using a varistor.
Note) 5. The 17-bit absolute encoder can also be used as a 17-bit incremental encoder.

Permissible Load at Output Shaft

The radial load is defined as a load applied to the output shaft in the right angle direction. This load is generated when the gear head is coupled to the machine using a chain, belt, etc., but not when the gear head is directly connected to the coupling. As shown in the right figure, the permissible value is determined based on the load applied to the L/2 position of the output shaft. The thrust load is defined as a load applied to the output shaft in the axial direction.
Because the radial load and thrust load significantly affect the life of the bearing, take care not to allow the load during operation to exceed the permissible radial load and thrust load shown in the table below.

Thrust load (A and B) direction

Built-in Holding Brake

In the applications where the motor drives the vertical axis, this brake would be used to hold and prevent the work (moving load) from falling by gravity while the power to the servo is shut off

Use this built-in brake for "Holding" purpose only, that is to hold the stalling status.

Never use this for "Brake" purpose to stop the load in motion.

Output Timing of BRK-OFF Signa

- For the brake release timing at power-on, or braking timing at Servo-OFF/Servo-Alarm while the motor is in motion, refer to the Operating Instructions (Overall).
With the parameter, Pr4.38 (Setup of mechanical brake action while the motor is in motion), you can set up a time between when the motor enters to a free-run from energized status and when BRK-OFF signa turns off (brake will be engaged), when the Servo-OFF or alarm occurs while the motor is in motion. Fo details, download a copy of the instruction manual from our website.
<Note>

1. The lining sound of the brake (chattering and etc.) might be generated while running the motor with built-in brake, however this does not affect any functionality.
2. Magnetic flux might be generated through the motor shaft while the brake coil is energized (brake is open). Pay an extra attention when magnetic sensors are used nearby the motor.

- Specifications of Built-in Holding Brake

Motor series	Motor output	Static friction torque $\mathrm{N} \cdot \mathrm{m}$	$\begin{gathered} \text { Rotor } \\ \text { inertia } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Engaging time ms	$\begin{gathered} \text { Releasing } \\ \text { time } \\ \mathrm{ms} \end{gathered}$	Exciting current DCA (at cool-off)	$\substack{\text { Releasing } \\ \text { voltage } \\ \text { DC V }}$ Exciting voltage DC V	Permissible work (J) per one braking	Permissible total work $\times 10^{3} \mathrm{~J}$	Permissible angular acceleration $\mathrm{rad} / \mathrm{s}^{2}$
MSMD	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\frac{1 \mathrm{~V} \text { or more }}{24 \pm 1.2}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	750 W	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
MSME	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\begin{array}{r} 1 \mathrm{~V} \text { or more } \\ 24 \pm 1.2 \end{array}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	750 W (200 V)	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
	$750 \mathrm{~W}(400 \mathrm{~V})$	2.5 or more	0.33	50 or less	$\begin{gathered} 15 \text { or less } \\ (100) \end{gathered}$	0.7	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	392	490	10000
	$\begin{gathered} 1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}, \\ 2.0 \mathrm{~kW} \end{gathered}$	7.8 or more				0.81				
	3.0 kW	11.8 or more		80 or less						
	$4.0 \mathrm{~kW}, 5.0 \mathrm{~kW}$	16.2 or more	1.35	110 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.9		1470	2200	
MDME	$\begin{aligned} & 400 \mathrm{~W}(400 \mathrm{~V}), \\ & 600 \mathrm{~W}(400 \mathrm{~V}) \end{aligned}$	2.5 or more	1.35	50 or less	15 or less	0.7	$\frac{24 \pm 2.4}{2 \mathrm{~V} \text { or more }}$	392	490	10000
	1.0 kW	4.9 or more		80 or less	$\begin{gathered} 70 \text { or less } \\ (200) \end{gathered}$	0.59		588	780	
	$1.5 \mathrm{~kW}, 2.0 \mathrm{~kW}$	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	3.0 kW	16.2 or more		110 or less		0.9		1470	2200	
	4.0 kW, 5.0 kW	24.5 or more	4.7	80 or less	$\begin{gathered} 25 \text { or less } \\ (200) \end{gathered}$	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or less	50 or less	1.4				5000
	$11.0 \mathrm{~kW}, 15.0 \mathrm{~kW}$	100 or more	7.1	300 or less	140 or less	1.08		2000	4000	3000
MFME	1.5 kW	7.8 or more	4.7	80 or less	35 or less	0.83	$\begin{array}{r} 24 \mathrm{~V} \text { or more } \\ 24.2 .4 \end{array}$	1372	2900	10000
	2.5 kW	21.6 or more	8.75	150 or less	100 or less	0.75		1470	1500	
	4.5 kW	31.4 or more							2200	
MGME	0.9 kW	13.7 or more	1.35	100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79	$\frac{24 \pm 2.4}{2 \mathrm{~V} \text { or more }}$	1176	1500	10000
	2.0 kW	24.5 or more	4.7	80 or less	$\begin{aligned} & 25 \text { or less } \\ & (2000) \end{aligned}$	1.3		1372	2900	5440
	3.0 kW	58.8 or more		150 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	1.4				
	4.5 kW, 6.0 kW				50 or less					5000
MHMD	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36	1 V or more	137	44.1	
MHMJ	750 W	2.45 or more	0.075	70 or less	20 or less	0.42	24 ± 1.2	196	147	300
MHME	1.0 kW	4.9 or more	1.35	80 or less	$70 \text { or less }$	0.59	$\begin{array}{r} 2 \mathrm{~V} \text { or more } \\ 24 \pm 2.4 \\ \hline \end{array}$	588	780	10000
	1.5 kW	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	2.0 kW $\sim 5.0 \mathrm{~kW}$	24.5 or more	4.7	80 or less	$25 \text { or less }$ (200)	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or less	50 or less	1.4				5000

- Releasing time values represent the ones with DC-cutoff using a varistor.

Values in () represent those measured by using a diode (V03C by Hitachi, Ltd.)

- Above values (except static friction torque, releasing voltage and excitation current) represent typical values - Backlash of the built-in holding brake is kept $\pm 1^{\circ}$ or smaller at ex-factory point.
- Service life of the number of acceleration/deceleration with the above permissible angular acceleration is more than 10 million times. (Life end is defined as when the brake backlash drastically changes.)

