

Similar to illustration

Delivery program

Product range
Product range
Accessories
Frame size
Phase-failure sensitivity
Description

Mounting type

Contact sequence

Auxiliary contacts
$\mathrm{N} / 0=$ Normally open
$\mathrm{N} / \mathrm{C}=$ Normally closed
For use with

Short-circuit protection

Type " 2 " coordination

Overload relay ZB up to 150 A

Accessories

Overload relays
ZB12
IEC/EN 60947, VDE 0660 Part 102
Test/off button
Reset pushbutton manual/auto Trip-free release

Direct mounting
2.4-4

1 N/0
1 N/C
DILM7, DILM9, DILM12, DILM15, DIULM7, DIULM9, DIULM12, SDAINLM12,
SDAINLM16,
SDAINLM22
DS7-34...SX004.

Notes
Overload release: tripping class 10 A
short-circuit protective device: Observe the maximum permissible fuse of the contactor with direct device mounting.

Suitable for protection of Ex e-motors.
$\|(2) G[E x d][E x ~ e][E x p x], I(2) D[E x p][E x t]$

PTB 10 ATEX 3010

Observe manual MN03407005Z-DE/EN.
Notes
Fitted directly to the contactor

1 Contactor

Technical data

Standards			IEC/EN 60947, VDE 0660, UL, CSA
Climatic proofing			Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30
Ambient temperature			
			Operating range to IEC/EN 60947 PTB: $-5^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}$
Open		${ }^{\circ} \mathrm{C}$	$-25-+55$
Enclosed		${ }^{\circ} \mathrm{C}$	-25-40
Temperature compensation			Continuous
Weight		kg	0.142
Mechanical shock resistance		g	10 Sinusoidal Shock duration 10 ms
Degree of Protection			IP20
Protection against direct contact when actuated from front (EN 50274)			Finger and back-of-hand proof
Altitude		m	Max. 2000
Main conducting paths			
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	V AC	6000
Overvoltage category/pollution degree			III/3
Rated insulation voltage	U_{i}	V	690
Rated operational voltage	$\mathrm{U}_{\text {e }}$	V AC	690
Safe isolation to EN 61140			
Between auxiliary contacts and main contacts		V AC	440
Between main circuits		V AC	440
Temperatur compensation residual error $>40^{\circ} \mathrm{C}$			$\leqq 0.25$ \%/K
Current heat loss (3 conductors)			
Lower value of the setting range		W	2.2
Maximum setting		W	6
Terminal capacities		mm^{2}	
Solid		mm^{2}	$\begin{aligned} & 1 \times(1-6) \\ & 2 \times(1-6) \end{aligned}$
Flexible with ferrule		mm^{2}	$\begin{aligned} & 1 \times(1-4) \\ & 2 \times(1-4) \end{aligned}$
Solid or stranded		AWG	18-8
Terminal screw			M4
Tightening torque		Nm	1.8
Stripping length		mm	10
Tools			
Pozidriv screwdriver		Size	2
Standard screwdriver		mm	1×6
Auxiliary and control circuits			
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	V	4000
Overvoltage category/pollution degree			III/3
Terminal capacities		mm^{2}	
Solid		mm^{2}	$1 \times(0.75-4)$

			$2 \times(0.75-4)$
Flexible with ferrule		mm^{2}	$\begin{aligned} & 1 \times(0.75-2.5) \\ & 2 \times(0.75-2.5) \end{aligned}$
Solid or stranded		AWG	$2 \times(18-14)$
Terminal screw			M3.5
Tightening torque		Nm	1.2
Stripping length		mm	8
Tools			
Pozidriv screwdriver		Size	2
Standard screwdriver		mm	1×6
Rated insulation voltage	U_{i}	V AC	500
Rated operational voltage	$\mathrm{U}_{\text {e }}$	V AC	500
Safe isolation to EN 61140			
between the auxiliary contacts		V AC	240
Conventional thermal current	$I_{\text {th }}$	A	6
Rated operational current	$\mathrm{I}_{\text {e }}$	A	
AC-15			
Make contact			
120 V	1 e	A	1.5
220 V 230 V 240 V	$1{ }_{\text {e }}$	A	1.5
380 V 400 V 415 V	$1{ }_{\text {e }}$	A	0.5
500 V	$\mathrm{I}_{\text {e }}$	A	0.5
Break contact			
120 V	1 e	A	1.5
220 V 230 V 240 V	$\mathrm{I}_{\text {e }}$	A	1.5
380 V 400 V 415 V	$\mathrm{I}_{\text {e }}$	A	0.9
500 V	$\mathrm{I}_{\text {e }}$	A	0.8
$D C L / R \leqq 15 \mathrm{~ms}$			

Switch-on and switch-off conditions based on DC-13, time constant as specified.

24 V	I_{e}	A	0.9
60 V	I_{e}	A	0.75
110 V	I_{e}	A	0.4
220 V	I_{e}	A	0.2
Short-circuit rating without welding			
max. fuse		$\mathrm{AgG} / \mathrm{gL}$	6

Notes
Notes Ambient air temperature: Operating range to IEC/EN 60947, PTB: $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Main circuits terminal capacity solid and flexible conductors with ferrules: When using 2 conductors use equal cross-sections.
Rating data for approved types
Auxiliary contacts

Pilot Duty

AC operated		B300 at opposite polarity B600 at same polarity
DC operated	SCCR	
R300		
Circuit Current Rating	kA	100
SCCR (fuse)	A	6 Class J/CC
max. Fuse		

Design verification as per IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation	I_{n}	A	4
Heat dissipation per pole, current-dependent	$\mathrm{P}_{\text {vid }}$	W	2
Equipment heat dissipation, current-dependent	$\mathrm{P}_{\text {vid }}$	W	6
Static heat dissipation, non-current-dependent	$\mathrm{P}_{\text {vs }}$	W	0

Heat dissipation capacity	$\mathrm{P}_{\text {diss }}$	W	0
Operating ambient temperature min.		${ }^{\circ} \mathrm{C}$	-25
Operating ambient temperature max.		${ }^{\circ} \mathrm{C}$	55
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures			Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat			Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects			Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation			Meets the product standard's requirements.
10.2.5 Lifting			Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact			Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions			Meets the product standard's requirements.
10.3 Degree of protection of ASSEMBLIES			Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances			Meets the product standard's requirements.
10.5 Protection against electric shock			Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components			Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections			Is the panel builder's responsibility.
10.8 Connections for external conductors			Is the panel builder's responsibility.
10.9 Insulation properties			
10.9.2 Power-frequency electric strength			Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage			Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material			Is the panel builder's responsibility.
10.10 Temperature rise			The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function			The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 7.0

Low-voltage industrial components (EG000017) / Thermal overload relay (EC000106)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Overload protection device / Thermal overload relay (ecl@ss10.0.1-27-37-15-01 [AKF075014])

Adjustable current range	A	$2.4-4$
Max. rated operation voltage Ue	V	690
Mounting method		Direct attachment
Type of electrical connection of main circuit	Screw connection	
Number of auxiliary contacts as normally closed contact	1	
Number of auxiliary contacts as normally open contact	1	
Number of auxiliary contacts as change-over contact	0	
Release class	CLASS 10	
Reset function input	No	
Reset function automatic	Yes	
Reset function push-button	Yes	

Approvals

Product Standards
UL File No.
UL Category Control No.
CSA File No.
CSA Class No.
North America Certification
Specially designed for North America
Suitable for

IEC/EN 60947-4-1; UL 60947-4-1; CSA - C22.2 No. 60947-4-1-14; CE marking
E29184
NKCR
12528
3211-03
UL listed, CSA certified
No
Branch circuits

Characteristics

These tripping characteristics are mean values of the spreads at $20^{\circ} \mathrm{C}$ ambient air temperature in a cold state.
Tripping time depends on response current.
When the devices are at operational temperature the tripping time of the overload relay falls to approx. 25% of the read off value.
1: Minimum level, 3-phase
2: Maximum level, 3-phase
3: Minimum marker, 2-phase
4: Highest marker, 2-phase

Dimensions

(1) OFF
(2) Reset/ON

