110301

Product name

Part no.
EAN
Product Length/Depth
Product height
Product width
Product weight
Compliances
Certifications

Product Tradename
Product Type
Product Sub Type

Application
Type
Circuit breaker frame type
Number of poles
Amperage Rating
Release system
Features

Special features

Voltage rating

Rated insulation voltage (Ui)
Rated impulse withstand voltage (Uimp) at auxiliary contacts
Rated impulse withstand voltage (Uimp) at main contacts
Rated short-time withstand current ($\mathrm{t}=0.3 \mathrm{~s}$)
Rated short-time withstand current ($\mathrm{t}=1 \mathrm{~s}$)
Instantaneous current setting (li) - min
Instantaneous current setting (li) - max
Overload current setting (Ir) - min
Overload current setting (Ir) - max
Short delay current setting (Isd) - min
Short delay current setting (Isd) - max
Short-circuit release non-delayed setting - min
Short-circuit release non-delayed setting - max
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Eaton Moeller series NZM - Molded Case Circuit Breaker
NZMC3-A500-BT
4015081098491
166 millimetre
275 millimetre
140 millimetre
7.567 kilogram

RoHS conform
IEC
IEC/EN 60947
NZM
Molded Case Circuit Breaker
None

Use in unearthed supply systems at 690 V
Circuit breaker

NZM3

Three-pole
500 A
Thermomagnetic release
Protection unit
Motor drive optional
Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated shortcircuit breaking capacity Icn) Rated current = rated uninterrupted current: 500 A Terminal capacity hint: Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer.
$690 \mathrm{~V}-690 \mathrm{~V}$
1000 V AC
6000 V
8000 V
3.3 kA
3.3 kA

3000 A
5000 A
400 A
500 A
0 A
0 A
3000 A
5000 A
55 kA
36 kA
22.5 kA

9 kA
4 kA
121 kA
76 kA
63 kA

Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	24 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	14 kA
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Electrical connection type of main circuit	Frame clamp
Isolation	300 V AC (between the auxiliary contacts) 500 V AC (between auxiliary contacts and main contacts)
Number of operations per hour - max	60
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	5000 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 2000 operations at $690 \mathrm{~V} \mathrm{AC}-3$ 5000 operations at $415 \mathrm{~V} \mathrm{AC}-1$ 2000 operations at $400 \mathrm{~V} \mathrm{AC}-3$ 3000 operations at $690 \mathrm{~V} \mathrm{AC}-1$ 2000 operations at $415 \mathrm{~V} \mathrm{AC}-3$
Direction of incoming supply	As required
Mounting Method	Fixed Built-in device fixed built-in technique
Degree of protection	IP20 IP20 (basic degree of protection, in the operating controls area)
Degree of protection (IP), front side	IP40 (with insulating surround) IP66 (with door coupling rotary handle)
Degree of protection (terminations)	IPOO (terminations, phase isolator and strip terminal) IP10 (tunnel terminal)
Protection against direct contact	Finger and back-of-hand proof to DIN EN 50274/VDE 0106 part 110
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Number of auxiliary contacts (change-over contacts)	0
Number of auxiliary contacts (normally closed contacts)	0
Number of auxiliary contacts (normally open contacts)	0
Position of connection for main current circuit	Front side
Climatic proofing	Damp heat, cyclic, to IEC 60068-2-30 Damp heat, constant, to IEC 60068-2-78
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated shortcircuit breaking capacity Icn) Rated current = rated uninterrupted current: 500 A Terminal capacity hint: Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer.
Lifespan, mechanical	15000 operations
Standard terminals	Boxterminal
Optional terminals	Connection on rear. Screw terminal. Tunnel terminal
Terminal capacity (control cable)	$\begin{aligned} & 0.75 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}(2 \mathrm{x}) \\ & 0.75 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}(1 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (aluminum stranded conductor/cable)	$\begin{aligned} & 25 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 x) \text { at tunnel terminal } \\ & 50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x}) \text { at 2-hole tunnel terminal } \\ & 50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 x) \text { at 2-hole tunnel terminal } \end{aligned}$
Terminal capacity (copper busbar)	Min. $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $30 \mathrm{~mm} \times 10 \mathrm{~mm}+30 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $10 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{x})$ at rear-side width extension M10 at rear-side screw connection
Terminal capacity (copper solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $16 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal $16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $16 \mathrm{~mm}^{2}(2 x)$ direct at switch rear-side connection $300 \mathrm{~mm}^{2}(2 \mathrm{x})$ at rear-side width extension
Terminal capacity (copper stranded conductor/cable)	$25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 \mathrm{x})$ direct at switch rear-side connection $16 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at 1 -hole tunnel terminal $35 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal $25 \mathrm{~mm}^{2}-120 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal $25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection
Terminal capacity (copper strip)	10 segments of $50 \mathrm{~mm} \times 1 \mathrm{~mm}(2 \mathrm{x})$ at rear-side width extension Max. 8 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}(2 \mathrm{x})$ at box terminal Max. 10 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}$ Max. 10 segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}$ at rear-side connection (punched) Min. 6 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal

Rated operational current for specified heat dissipation (In)	500 A
Equipment heat dissipation, current-dependent	93 W
Ambient operating temperature - min	$-25^{\circ} \mathrm{C}$
Ambient operating temperature - max	$70^{\circ} \mathrm{C}$
Ambient storage temperature - min	$40^{\circ} \mathrm{C}$
Ambient storage temperature - max	$70^{\circ} \mathrm{C}$
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of assemblies	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.
Functions	System and cable protection

Technical data ETIM 8.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV <1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu

Rated voltage

Rated short-circuit breaking capacity Icu at $400 \mathrm{~V}, 50 \mathrm{~Hz}$
Overload release current setting
Adjustment range short-term delayed short-circuit release
Adjustment range undelayed short-circuit release
Integrated earth fault protection
Type of electrical connection of main circuit
Device construction
Suitable for DIN rail (top hat rail) mounting
DIN rail (top hat rail) mounting optiona
Number of auxiliary contacts as normally closed contact
Number of auxiliary contacts as normally open contact
500
V 690-690
kA $\quad 36$
A $\quad 400-500$
A 0-0
A $3,000-5,000$
No
Frame clamp
Built-in device fixed built-in technique
No
No
0
0
Number of auxiliary contacts as change-over contact
With switched-off indicator No

With integrated under voltage release No

Position of connection for main current circuit Front side

Type of control element

Complete device with protection unit
Rocker lever

Motor drive integratedYes

Motor drive optional -Degree of protection (IP)YesIP20

