DATASHEET - IZMX40N4-A10F

Circuit-breaker, 4p, 1000A, fixed

IZMX40N4-A10F Part no. Catalog No. 149886

Alternate Catalog RES8104B22-NMNN2MN1X

Delivery program

Delivery program			
Product range			Air circuit-breakers/switch-disconnectors
Productrange			Open circuit-breakers
Current Range			Up to 4000 A
Protective function			System protection
Installation type			Fixed
Construction size			IZMX40
Release system			Electronic release
Standard/Approval			IEC
Number of poles			4 pole
Degree of Protection			IP20, IP55 with protective cover, IP41 door sealing frame
			optionally fittable by user with comprehensive accessories
Rated current = rated uninterrupted current	$I_n = I_u$	Α	1000
Rated ultimate short-circuit breaking capacity up to 440V/690V 42/42	I _{cu}	kA	85
Rated service short-circuit breaking capacity up to 440V/690V 42/42	I _{cs}	kA	85
Overload release, min.	I _r	Α	500
Overload release, max.	I _r	Α	1000
Non-delayed	$I_i = I_n x \dots$		2 - 12
Notes			

Main terminals must be separately ordered.

Technical data

		IEC/EN 60947
θ	°C	-40 - +70
	°C	-25 - +70
		30° 30°
		30° 30°
		В
		IP20, IP55 with protective cover, IP41 door sealing frame
		as required
$\boldsymbol{I}_n = \boldsymbol{I}_u$	Α	1000
Iu	Α	1000
Iu	Α	1000
	I _n = I _u I _u	I _n = I _u A I _u A

Uimp Ue IIT Ui Icm Icm Icw Icw Icu Icu Icu	V AC V AC kA V kA kA kA kA kA	12000 690 57.6 III/3 1000 187 166 85 66
I _{IT} Ui L _{cm} L _{cm} L _{cm} L _{cm} L _{cm} L _{cw} L _{cw} L _{cw} L _{cw} L _{cu} L _{cu} L _{cu} L _{cu} L _{cu}	kA V kA kA kA kA kA	57.6 III/3 1000 187 166 85 66
I _{IT} Ui L _{cm} L _{cm} L _{cm} L _{cm} L _{cm} L _{cw} L _{cw} L _{cw} L _{cw} L _{cu} L _{cu} L _{cu} L _{cu} L _{cu}	V KA KA KA KA KA	III/3 1000 187 166 85 66 85
U _i I _{cm} I _{cm} I _{cw} I _{cw} I _{cn} I _{cu} I _{cu} I _{cu}	kA kA kA kA	1000 187 166 85 66 85
I _{cm} I _{cm} I _{cm} I _{cw} I _{cw} I _{cn} I _{cu} I _{cu}	kA kA kA kA	1000 187 166 85 66 85
I _{cm} I _{cm} I _{cm} I _{cw} I _{cw} I _{cn} I _{cu} I _{cu}	kA kA kA kA	166 85 66 85 85
l _{cm} l _{cw} l _{cw} l _{cw} l _{cu} l _{cu} l _{cu}	kA kA kA kA	166 85 66 85 85
I _{cw} I _{cw} I _{cn} I _{cu} I _{cu} I _{cu}	kA kA kA kA	166 85 66 85 85
I _{cw} I _{cm} I _{cu} I _{cu}	kA kA kA	85 66 85
I _{cw} I _{cn} I _{cu} I _{cu}	kA kA kA	668585
I _{cw} I _{cn} I _{cu} I _{cu}	kA kA kA	668585
I _{cn} I _{cu}	kA kA	85 85
I _{cu}	kA	85
I _{cu}	kA	85
I _{cu}	kA	85
I _{cu}		
		75
L	kΔ	85
		85
		75
cs	NA.	
	me	35
		22
		37
	ms	45
Operations/h		60
	W	40
	kg	43
	kg	56
	mm	1 x 60 x 10
		These are values used in separate switchgear. The actual values will depend on the temperature around the circuit-breaker, which is influenced by the ambient temperature, the degree of protection (IP), the mounting height, the partitions, and any external ventilation. Depending on the specific switchgear design, this may result in derating, which can then be compensated for by increasing the cross-sectional area. Temperature rise tests in the specific switchgear can provide specific and detailed information. Permissible continuous current for circuit-breakers operating in switchboards at various internal ambient temperatures. The switchboard's internal ambient
	I _{cs} I _{cs} I _{cs} Operations/h	I _{CS} kA I _{CS} kA I _{CS} kA ms ms ms ms Ws W

Design verification as per IEC/EN 61439

Technical data for design verification			
Rated operational current for specified heat dissipation	In	Α	1000
Equipment heat dissipation, current-dependent	P _{vid}	W	40
Operating ambient temperature min.		°C	-25
Operating ambient temperature max.		°C	70
IEC/EN 61439 design verification			

10.2 Strength of materials and parts	
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of ASSEMBLIES	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9 Insulation properties	
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eato provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instru leaflet (IL) is observed.

Technical data ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

1,		
Rated permanent current lu	A	1000
Rated voltage	V	690 - 690
Rated short-circuit breaking capacity Icu at 400 V, 50 Hz	kA	85
Overload release current setting	Α	500 - 1000
Adjustment range short-term delayed short-circuit release	Α	0 - 0
Adjustment range undelayed short-circuit release	Α	2000 - 12000
Integrated earth fault protection		No
Type of electrical connection of main circuit		Rail connection
Device construction		Built-in device fixed built-in technique
Suitable for DIN rail (top hat rail) mounting		No
DIN rail (top hat rail) mounting optional		No
Number of auxiliary contacts as normally closed contact		0
Number of auxiliary contacts as normally open contact		0
Number of auxiliary contacts as change-over contact		2
With switched-off indicator		Yes
With under voltage release		No
Number of poles		4
Position of connection for main current circuit		Back side
Type of control element		Push button
Complete device with protection unit		Yes
Motor drive integrated		No
Motor drive optional		Yes
Degree of protection (IP)		IP20