Circuit-breaker, 3p, 500A
Part no.
NZMN3-S500
Powering Business Worldwide" 109683

General specifications

Product name
Part no.
EAN
Product Length/Depth
Product height
Product width
Product weight
Compliances
Certifications
Product Tradename
Product Type
Product Sub Type
Delivery program
Application
Type
Circuit breaker frame type
Number of poles
Amperage Rating
Release system
Special features

Technical Data - Electrical

Voltage rating
Rated insulation voltage (Ui)
Rated impulse withstand voltage (Uimp) at auxiliary contacts
Rated impulse withstand voltage (Uimp) at main contacts
Rated operational current
Rated short-time withstand current (t = 0.3 s)
Rated short-time withstand current (t = 1 s)
Instantaneous current setting (li) - min
Instantaneous current setting (li) - max
Overload current setting (Ir) - min
Overload current setting (Ir) - max
Short-circuit release non-delayed setting - min
Short-circuit release non-delayed setting - max
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Eaton Moeller series NZM molded case circuit breaker magnetic NZMN3-S500

4015081092697
166 millimetre
275 millimetre
140 millimetre
5.8 kilogram

RoHS conform
IEC/EN 60947
IEC
NZM
Molded case circuit breaker
Magnetic

Use in unearthed supply systems at 690 V
Circuit breaker
NZM3
Three-pole
500 A
Thermomagnetic release
Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn)
Motor protection in conjunction with overload relay
With short-circuit release
Without overload release Ir
IEC/EN 60947-4-1, IEC/EN 60947-2
The circuit-breaker fulfills all requirements for AC-3 switching category.
Rated current = rated uninterrupted current: 500 A
Terminal capacity hint: Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer.
$690 \mathrm{~V}-690 \mathrm{~V}$
1000 V
6000 V
8000 V
437 A (400 V AC-3)
3.3 kA
3.3 kA

6 A
10 A
0 A
0 A
3000 A
5000 A
85 kA
35 kA
35 kA
13 kA
5 kA
187 kA
105 kA

Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	74 kA
Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	53 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	40 kA
Rated operating power at AC-3, 230 V	160 kW
Rated operating power at AC-3, 400 V	250 kW
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Electrical connection type of main circuit	Screw connection
Isolation	500 V AC (between auxiliary contacts and main contacts) 300 V AC (between the auxiliary contacts)
Number of operations per hour - max	60
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	3000 operations at 690 V AC-1 5000 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 5000 operations at $415 \mathrm{~V} \mathrm{AC}-1$ 2000 operations at 690 V AC-3 2000 operations at $415 \mathrm{~V} \mathrm{AC}-3$ 2000 operations at $400 \mathrm{~V} \mathrm{AC}-3$
Direction of incoming supply	As required
Technical Data - Mechanical	
Mounting Method	Built-in device fixed built-in technique Fixed
Degree of protection	IP20 IP20 (basic degree of protection, in the operating controls area)
Degree of protection (IP), front side	IP66 (with door coupling rotary handle) IP40 (with insulating surround)
Degree of protection (terminations)	IP10 (tunnel terminal) IP00 (terminations, phase isolator and strip terminal)
Protection against direct contact	Finger and back-of-hand proof to VDE 0106 part 100
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Switch off technique	Magnetic
Climatic proofing	Damp heat, cyclic, to IEC 60068-2-30 Damp heat, constant, to IEC 60068-2-78
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) Motor protection in conjunction with overload relay With short-circuit release Without overload release Ir IEC/EN 60947-4-1, IEC/EN 60947-2 The circuit-breaker fulfills all requirements for $\mathrm{AC}-3$ switching category. Rated current = rated uninterrupted current: 500 A Terminal capacity hint: Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer.
Lifespan, mechanical	15000 operations
Technical Data - Mechanical - Terminals	
Standard terminals	Screw terminal
Optional terminals	Box terminal. Connection on rear. Tunnel terminal
Terminal capacity (control cable)	$\begin{aligned} & 0.75 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}(2 \mathrm{x}) \\ & 0.75 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}(1 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (aluminum stranded conductor/cable)	$50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at 2 -hole tunnel terminal $25 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 \mathrm{x})$ at 2-hole tunnel terminal
Terminal capacity (copper busbar)	Max. $30 \mathrm{~mm} \times 10 \mathrm{~mm}+30 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection M10 at rear-side screw connection Max. $10 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{x})$ at rear-side width extension Min. $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection
Terminal capacity (copper solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $300 \mathrm{~mm}^{2}(2 x)$ at rear-side width extension $16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $16 \mathrm{~mm}^{2}(2 x)$ at box terminal $16 \mathrm{~mm}^{2}(2 \mathrm{x})$ direct at switch rear-side connection
Terminal capacity (copper stranded conductor/cable)	$16 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at 1 -hole tunnel terminal $35 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal $25 \mathrm{~mm}^{2}-120 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal $25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection

Terminal capacity (copper strip)

Design verification as per IEC/EN 61439 - technical data	
Rated operational current for specified heat dissipation (In)	500 A
Equipment heat dissipation, current-dependent	93 W
Ambient operating temperature - min	$-25^{\circ} \mathrm{C}$
Ambient operating temperature - max	$70^{\circ} \mathrm{C}$
Ambient storage temperature - min	$40^{\circ} \mathrm{C}$
Ambient storage temperature - max	$70^{\circ} \mathrm{C}$
Design verification as per IEC/EN 61439	
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of assemblies	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.
Additional information	
Functions	Short-circuit protection

Max. 10 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}$ at box termina 10 segments of $50 \mathrm{~mm} \times 1 \mathrm{~mm}(2 x)$ at rear-side width extension Min. 6 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal
Max. 10 segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}$ at rear-side connection (punched)
Max. 8 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}(2 x)$ at box terminal
Min. 6 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at rear-side connection (punched)

Meets the product standard's requirements

Meets product standard's require

Meets the product standard's requirements
eets the product standard's requirements.
oes not apply, since the entire switchgear needs to be evaluated
Does not apply, since the entire switchgear needs to be evaluated

Technical data ETIM 9.0

Low-voltage industrial components (EG000017) / Motor protection circuit-breaker (EC000074)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Motor protection circuit-breaker (ecl@ss13-27-37-04-01 [AGZ529021])

Overload release current setting	A	0-0
Adjustment range undelayed short-circuit release	A	6-10
With thermal overload protection		No
Phase failure sensitive		No
Switch off technique		Magnetic
Rated operating voltage	V	690-690
Rated permanent current lu	A	500
Rated operation power at AC-3, 230 V	kW	160
Rated operation power at AC-3, 400 V	kW	250
Power loss	W	
Type of electrical connection of main circuit		Screw con

Adjustment range undelayed short-circuit release
With thermal overload protection
Phase failure sensitive
Switch off technique
Rated operating voltage
Rated permanent current lu
Rated operation power at AC-3, 230 V
Rated operation power at AC-3, 400 V
Power loss
W
Type of electrical connection of main circuit

Type of control element
Device construction
With integrated auxiliary switch
With integrated under voltage release
Number of poles
Rated short-circuit breaking capacity Icu at $400 \mathrm{~V}, \mathrm{AC}$
Degree of protection (IP)
Height $\quad \mathrm{mm} \quad 275$
Width
Depth
mm 140

Rocker lever

Built-in device fixed built-in techniqueNoNo3

kA IP20
mm 140
mm 166

