DATASHEET - LZMB1-4-A125-I

Circuit-breaker, 4 p, 125A

Part no.
LZMB1-4-A125-I
Powering Business Worldwide 111876

General specifications
Product name
Part no.
EAN
Product Length/Depth
Product height
Product width
Product weight
Compliances
Certifications

Product Tradename
Product Type
Product Sub Type
Delivery program
Application
Type
Circuit breaker frame type
Number of poles
Amperage Rating
Release system
Features
Special features

Technical Data - Electrical

Voltage rating
Rated insulation voltage (Ui)
Rated impulse withstand voltage (Uimp) at auxiliary contacts
Rated impulse withstand voltage (Uimp) at main contacts
Current rating of neutral conductor
Rated operational current

Instantaneous current setting (li) - min
Instantaneous current setting (li) - max
Overload current setting (Ir)
Overload current setting (Ir) - min
Overload current setting (Ir) - max
Short delay current setting (Isd) - min
Short delay current setting (Isd) - max
Short-circuit release non-delayed setting - min
Short-circuit release non-delayed setting - max
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Eaton Moeller series Power Defense molded case circuit-breaker
LZMB1-4-A125-I
4015081114245
88 millimetre
145 millimetre
120 millimetre
1.324 kilogram

RoHS conform
IEC/EN 60947
IEC
VDE 0660
Power Defense
Molded case circuit breaker
None

Use in unearthed supply systems at 440 V
Circuit breaker
LZM1
Four-pole
125 A
Thermomagnetic release
Protection unit
Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) Rated current = rated uninterrupted current: 125 A Set value in neutral conductor is synchronous with set value Ir of main pole.
$440 \mathrm{~V}-440 \mathrm{~V}$
690 V AC
6000 V
6000 V
200\% of phase conductor
125 A (415 V AC-1, making and breaking capacity)
125 A (660-690 V AC-3, making and breaking capacity)
160 A (380/400 V AC-1, making and breaking capacity)
125 A (415 V AC-3, making and breaking capacity)
750 A
1250 A
100 A-125A
100 A
125 A
0 A
0 A
750 A
1250 A
30 kA
25 kA
18.5 kA

63 kA
53 kA
53 kA

Short-circuit total breaktime	< 10 ms
Electrical connection type of main circuit	Frame clamp
Isolation	300 V AC (between the auxiliary contacts) 500 V AC (between auxiliary contacts and main contacts)
Number of operations per hour - max	120
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	7500 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 7500 operations at $415 \mathrm{~V} \mathrm{AC}-3$ 10000 operations at $415 \mathrm{~V} \mathrm{AC}-1$
Direction of incoming supply	As required
Technical Data - Mechanical	
Mounting Method	DIN rail (top hat rail) mounting optional Built-in device fixed built-in technique Fixed
Degree of protection	In the area of the HMI devices: IP20 (basic protection type) IP20
Degree of protection (IP), front side	IP40 (with insulating surround) IP66 (with door coupling rotary handle)
Degree of protection (terminations)	IPOO (terminations, phase isolator and band terminal) IP10 (tunnel terminal)
Protection against direct contact	Finger and back-of-hand proof to DIN EN 50274/VDE 0106 part 110
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Number of auxiliary contacts (change-over contacts)	0
Number of auxiliary contacts (normally closed contacts)	0
Number of auxiliary contacts (normally open contacts)	0
Position of connection for main current circuit	Front side
Climatic proofing	Damp heat, cyclic, to IEC 60068-2-30 Damp heat, constant, to IEC 60068-2-78
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) Rated current = rated uninterrupted current: 125 A Set value in neutral conductor is synchronous with set value Ir of main pole.
Lifespan, mechanical	20000 operations
Technical Data - Mechanical - Terminals	
Standard terminals	Box terminal
Terminal capacity (control cable)	$\begin{aligned} & 0.75 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}(2 \mathrm{x}) \\ & 0.75 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}(1 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (aluminum stranded conductor/cable)	$25 \mathrm{~mm}^{2}-95 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (copper busbar)	Min. $12 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $16 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection M8 at rear-side screw connection
Terminal capacity (copper solid conductor/cable)	$10 \mathrm{~mm}^{2}-16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal $10 \mathrm{~mm}^{2}-16 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $16 \mathrm{~mm}^{2}-95 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $6 \mathrm{~mm}^{2}-16 \mathrm{~mm}^{2}(2 x)$ at box terminal $6 \mathrm{~mm}^{2}-16 \mathrm{~mm}^{2}(2 \mathrm{x})$ direct at switch rear-side connection
Terminal capacity (copper stranded conductor/cable)	$25 \mathrm{~mm}^{2}-70 \mathrm{~mm}^{2}$ (1x) at box terminal $25 \mathrm{~mm}^{2}(2 x)$ direct at switch rear-side connection $25 \mathrm{~mm}^{2}-70 \mathrm{~mm}^{2}$ (1x) direct at switch rear-side connection $25 \mathrm{~mm}^{2}(2 x)$ at box terminal $25 \mathrm{~mm}^{2}-95 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (copper strip)	Min. 2 segments of $9 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal Max. 9 segments of $9 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal
Design verification as per IEC/EN 61439 - technical data	
Rated operational current for specified heat dissipation (In)	125 A
Equipment heat dissipation, current-dependent	26.72 W
Design verification as per IEC/EN 61439	
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.

10.2.6 Mechanical impact
10.2.7 Inscriptions
10.3 Degree of protection of assemblies
10.4 Clearances and creepage distances
10.5 Protection against electric shock
10.6 Incorporation of switching devices and components
10.7 Internal electrical circuits and connections
10.8 Connections for external conductors
10.9.2 Power-frequency electric strength
10.9.3 Impulse withstand voltage
10.9.4 Testing of enclosures made of insulating material
10.10 Temperature rise
10.11 Short-circuit rating
10.12 Electromagnetic compatibility
10.13 Mechanical function

Additional information

Meets the product standard's requirements.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

