

Data sheet

Electric Regulating Valve Type KVS

KVS is a series of electronic suction modulating valves for AC transport and refrigeration applications.

Accurate temperature or pressure control is obtained by modulating the refrigerant flow in the evaporator with a current or voltage driver.

With an EKC 368 controller (current driver) and an AKS sensor placed in the media to be controlled, an accuracy better than \pm 0.5K can be obtained.

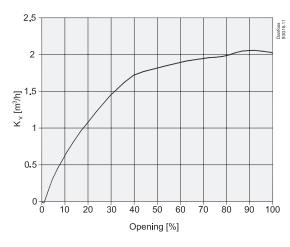
The balanced design provides bi-flow operation as well as solenoid shut-off function in both flow directions at MOPD 33 bar (478 psig).

Features

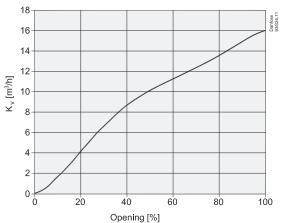
- Biflow.
- High resolution for precise control.
- Wide range for all common refrigerants R22, R134a, R404A, R407A, R407C, R407F, R422B, R422D, R438A, R448A, R449A, R450A, R452A, R507, R513A, R410A, R1234ze and other refrigerants
- Balanced port design (KVS 42).
- Solenoid tight shut-off.

- Low power consumption.
- Corrosion resistant design external as well as internal.
- Cable and connector assemblies as accessories.
- For manual operation and service of KVS valves an AST-g service driver is available.
 For further information please contact Danfoss
- (Commercial Refrigeration & Air Conditioning Controls).

Technical data

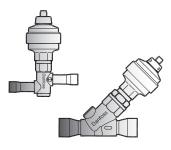

Parameter	KVS 15	KVS 42
Compatible refrigerants	R22, R134a, R404A, R407A, R407C, R407F, R422B, R422D, R438A, R448A, R449A, R450A, R452A, R507, R513A, R410A, R1234ze and other refrigerants	R22, R134a, R404A, R407A, R407C, R407F, R422B, R422D, R438A, R448A, R449A, R450A, R452A, R507, R513A, R410A, R1234ze and other refrigerants
Refrigerant oil	All mineral and ester oils	All mineral and ester oils
CE marking	No	Yes
MOPD	33 bar / 478.6 psig	33 bar / 478 psig
Max. working pressure	45.5 bar / 660 psig	34 bar / 493 psig
Inlet fluid temperature	-40 to +65 °C / -40 to +149 °F	-40 to +65 °C / -40 to +149 °F
Ambient temperature	-40 to +60 °C / -40 to +140 °F	-40 to +60 °C / -40 to +140 °F
Total stroke	13 mm / 0.5 inch	17.2 mm / 0.68 inch
Motor enclosure	IP 67	IP 67
Material of Construction	Body and AST Encloser: Brass Connector: Copper	Body and AST Encloser: Brass Connector: Copper

Electrical data


Parameter	KVS 15 and KVS 42
Stepper motor type	Bi-polar - permanent magnet
Step mode	2 phase full step
Phase resistance	52 Ω ±10%
Phase inductance	85 mH
Holding current	Constant voltage drive: Depends on application. Chopper drive: full current allowed (100% duty cycle)
Step angle	7.5° (motor), 0.9° (lead screw), Gearing ration 8.5:1. (38/13)2:1
Nominal voltage	Constant voltage drive: 12 V DC -4% – 15%, 150 steps/sec.
Phase current	(Using chopper drive) 100 mA RMS -4% +15%,
Max. total power	Voltage / current drive: 5.5 / 1.3 W (UL: NEC class 2)
Step rate	Constant voltage drive: 150 steps/sec. Chopper current drive: 0 – 300 steps/sec. 300 recommended
Total steps	KVS 15: 2625 [+160 / -0] steps KVS 42: 3810 [+160 / -0] steps
Full travel time	KVS 15: 17 / 8.5 sec. (voltage / current) KVS 42: 25.4 / 12.7 sec. (voltage / current)
Lifting height	KVS 15: 13 mm / 0.5 inch KVS 42: 17.2 mm / 0.68 in
Reference position	Overdriving against the full close position
Electrical connection	M12 connector
Compatible controller / driver	EKC 368 / EKD 316 or EKD 316C

Flow curves

KVS 15 Capacity Curve


KVS 42 Capacity Curve

Ordering

KVS valves in single pack

			Rated ca	apacity ¹⁾				Connectio	ns
Туре	vpe R22		R13	34a	R404A	/R507	OI	Code no.	
	kW	TR	kW	TR	kW	TR	mm	in.	single pack
KVS 15	5.15	1.31	3.78	0.94	4.58	3 1.07	16	5/8	034G4252
KV315	5.15	1.51	5.70	0.94	4.30		22	7/8	034G4253
						22	7/8	034G2858	
KVS 42	40.4	11 /	20.2	0.2	25.2	10.0	28	11/8	034G2850
KV342	40.4	0.4 11.4	29.3	8.3	35.3	10.0	35	13/8	034G2851
							-	15/8	034G2852

¹) Rated capacity is the valve capacity at evaporating temperature $t_e = -10^{\circ}C$ (14°F), condensing temperature $t_c = +25^{\circ}C$ (77°F) and pressure drop across valve $\Delta p = 0.2$ bar (2.9 psig).

Accessories: M12 Female Connector Cable

Actuator with integrated M12 connection

Spare parts

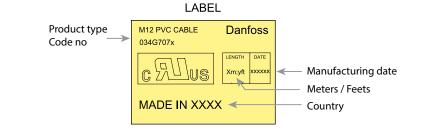
Items	Description	Quantity [pcs]	Code no.
	Actuator with integrated M12 with Ceramic bearing (incl. metal gasket) for KVS 15	1	034G2088
	Actuator with integrated M12 with ceramic bearing (incl. metal gasket) for KVS 42	1	034G2087
0	Metal Gasket	1	034G2344

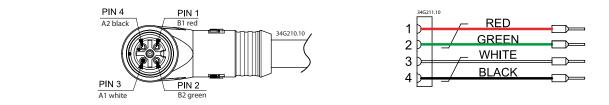
Accessories: M12 angle cable

M12 angle female connector is intended for use with a standard M12 male connector, available on stepper motor valves.

This cable is designed to offer high flexibility and small outer diameters with tensile strength. The angle way M12 cable consist of paired, twisted wires, which decreases mutual influence between signals transmitted along the cable and reduces influence of external sources of interference. The cables thus provides a higher degree of protection against lost steps compared to other cables.

Approvals


Specification


Jacket	PVC - black
Cable outer sheath	Oil - resistant
Water proof rating	IP 67
Operating temperature range	-40 – +80 °C
Wire type	Twisted pair, cross section 20 AWG / 0.5 mm2
Cable outer diameter	7.0 mm
Minimum bending radius	10 x cable diameter
Cable combustibility / test	Flame retardant / VW-1 / CSA FT - 1
M12 standard	EN 61076-2-101
Reference standard	UL style 2464 and DIN VDE 0812
LVD directive	73/23/EEC and 93/68/EEC


Ordering

Cable	Cable length (L)	Insulation	Packing format	Code no.
PVC - black	2 m / 6.6 ft	SR-PVC	Single pack	034G7073
PVC - DIACK	8 m / 26.2 ft	SR-PVC	Single pack	034G7074

Identification

Dimensions

Connections

Design

🔥 Note: Flow direction from A to B refers the normal flow.

- 1. M12 Connector Glass seal
- AST motor housing
- Stepper motor Bearing Spindle
- 2. 3. 4. 5. 6. 7. 8.

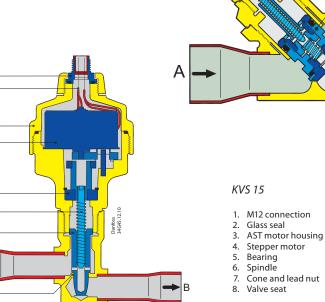
1 2

> 3 4

5 6

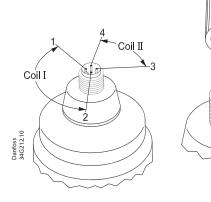
7

8


- Top nut Valve piston
- 9. Valve seat 10. Valve cone
- 8 9 10 Danfoss 34G103.11.11 В Α

567

2


1

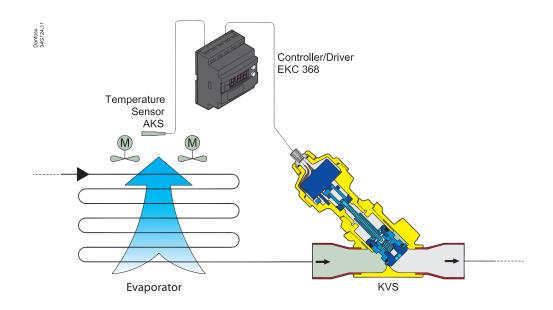
3 4

Electrical wiring

A Note: Electrical check of stepper motor and wiring: coil I = 52 ohm coil II = 52 ohm

Stepper motor switch sequence

	STEP	Co	il I	Co	il II	
	SIEP	Red	Green	White	Black	
	1	+	-	+	-	
\uparrow CLOSING \uparrow	2	+	-	-	+	\downarrow OPENING \downarrow
	3	-	+	-	+	
	4	-	+	+	-	
	1	+	-	+	-	


If the controller driving the KVS valve is from another manufacturer than Danfoss or a custom design, the following points must be considered in order to overcome potential step loss.

a. To ensure total closing of the valve, the controller should have a function to overdrive the valve in the closing direction. It is recommended to overdrive ten percent of the full step range at appropriate intervals. b. The amount of lost steps may increase as a function of the amount of changes of the opening degree. Such designed controller should be able to compensate the lost steps after a defined number of changes in opening degree.

M Warning:

At power failure the KVS valve will remain in the opening position it has at the moment of power failure, unless a safety device in the form of a battery backup is installed.

Valve application

Valve operation

The KVS valves operate modulating by electronically controlled activation of the AST stepper motor. The motor is a type 2-phase bipolar, which stays in position, unless power pulses from a driver initiate the two discrete sets of motor stator windings for rotation in either directions.

The direction of the rotation of the spindle depends on the phase relationship of the power pulses. This is decisive for the travel of the piston.

The motor is operating the spindle, whose rotating movements are transformed into linear motion by the transmission in the cage assembly. The AST motor housing has an integrated M12 connector.

The KVS 42 valves have a pressure slide port respectively exponential cone, combining the best performance qualities at part load conditions as well as providing a zero-resistance at maximum capacity.

The piston design is fully power balanced, giving identical bi-flow performance capabilities and nearby identical maximum capacities.

Closing the valve by overdriving, ensures that the reference number in steps is always correct.

Operating the KVS series requires a controller with either 12 V dc voltage drive (5.5 W) or using chopper drive (100 mA RMS).

Danfoss EKC 368 in an example of a qualified controller.

Cable length between driver and actuator exceeding 10 m (30 feet) can set off self-induction with reduction in the transmitted power and irregularity in the sequences as consequence.

This may result in loss of steps now and again or more permanent inadequate power supply to the step motor.

The driver circuit as well as the cable specifications are part of this interference.

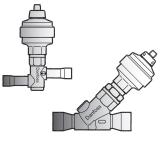
Please contact Danfoss for further information and possible countermeasures.

Coolselector2®

For easy and precise selection of valve, use Danfoss' CoolSelector2[®] software. You can find the KVS valves on the group, "Control and regulating valves". You can download it from <u>http://coolselector.danfoss.com</u>

Valve sizing	into considera requirements. acceptable pre The following	 For optimum performance, it is important to take into consideration all system conditions and requirements. Selection is also dependent on an acceptable pressure drop across the valve. The following information will be needed when sizing a KVS valve: Refrigerant Evaporator capacity Q_e in kW or TR Evaporating temperature t_e in °C or °F Liquid temperature ahead of expansion valve t_i in °C or °F Max. acceptable pressure drop in the KVS valve in bar or psig Connection size 									in °C oi f expar		
Valve selection <i>Example</i>	correction fact capaity. This co conditions are Selection also pressure drop	In valve selection it may be necessary to apply a correction factor to the actual evaporator capaity. This correction is required when system conditions are different than table conditions. Selection also depends on having an acceptable pressure drop across the valve. The following example illustrates correct sizing. $\begin{aligned} & \text{Refrigerant: R 404A} \\ & \text{Evaporator capacity: } Q_e = 20 \text{ kW } / 5.7 \text{ TR} \\ & \text{Evaporating temperature:} \\ t_e = -10^\circ\text{C} ~ 3.4 \text{ bar } / 14^\circ\text{F} ~ 49.3 \text{ psig} \\ & \text{Liquid temperature ahead of expansion valve:} \\ t_1 = 25^\circ\text{C} / 77^\circ\text{F} \\ & \text{Max. pressure drop in the valve:} \\ & \Delta p = 0.2 \text{ bar } / 2.9 \text{ psig} \\ & \text{Connection type: Solder} \\ & \text{Connection size: } 11/8 \text{ in.} \end{aligned}$									alve:		
Step 1	Determine the perature trahe Correction fac	ad of expar	nsion valv	/e.	m-	liqui	n the co d temp espond	peratur	e of 25	5°C / 10			w) a
	t _i °C	10	15	20	25	5	30	35		40	45		50
	R134a	0.88	0.92	0.96	1	0	1.05	1.10)	1.16	1.23		1.31
	R22	0.90	0.93	0.96	1		1.05	1 1 1		1.13	1.18		1.24
							1.05	1.10				_	
	R404A / R507	0.84	0.89	0.94	-(1.		1.07	1.16	5	1.26	1.40		1.57
	R404A / R507 · R407C	0.84							5		1		
Step 2 Step 3	R407C Corrected eval $Q_e = 20 \times 1.0 =$	0.88 00rator cap 20 kW / 5.7	0.89 0.91 0.91 0 acity is 0 × 1.0 = 5	0.94 0.95	-(1.		1.07	1.16	5	1.26 1.18	1.40 1.26		1.57 1.35
	R407C Corrected eva	0.88 00rator cap 20 kW / 5.7 appropriat 00se the co mperature ected evapo ides an equacceptable	0.09 0.91 0.91 $2 \times 1.0 = 5$ $1 \times 1.0 = $	0.94 0.95 .7 TR ty table, an 0°C / 14°F pacity, sel pr greater	ect a	KVS 2.9 p Base the I	1.07 1.05	1.10 1.11 vers 33 essure	3.32 kV drop a	1.26 1.18 V / 9.5 across onnec	TR at a the val tion siz	0.2 ba ve. this	1.57 1.35 r / /ଃ in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select the R404A, and ch evaporating teUsing the corre valve that provide that provi	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable 2 bar / 2.9 p	0.09 0.91 0.91 $2 \times 1.0 = 5$ $1 \times 1.0 = $	0.94 0.95 .7 TR ty table, an 0°C / 14°F pacity, sel pr greater	ect a	KVS 2.9 p Base the I	1.07 1.05 42 deli psig) pro- ed on th KVS 42	1.10 1.11 vers 33 essure	3.32 kV drop a	1.26 1.18 V / 9.5 across onnec	TR at a the val tion siz	0.2 ba ve.	1.57 1.35 r / /ଃ in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable 2 bar / 2.9 p	0.09 0.91 0.91 $2 \times 1.0 = 5$ $1 \times 1.0 = $	0.94 0.95 .7 TR ty table, an 0°C / 14°F pacity, sel pr greater	ect a	KVS 2.9 p Base the H exar	1.07 1.05 42 deli psig) pro- ed on th KVS 42	1.16 1.11 vers 33 essure he requ is the p	3.32 kV drop a uired c	1.26 1.18 V / 9.5 across onnec	TR at a the val tion siz	0.2 ba ve. this	1.57 1.35 r / /ଃ in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable 2 bar / 2.9 p	0.09 0.91 0.91 $2 \times 1.0 = 5$ $1 \times 1.0 = $	0.94 0.95 .7 TR ty table, an 0°C / 14°F pacity, sel or greater drop acro	ect a	KVS 2.9 p Base the H exar	1.07 1.05 42 deli osig) pr ed on th KVS 42 mple.	1.16 1.11 vers 33 essure he requ is the p	3.32 kV drop a uired c	1.26 1.18 V / 9.5 across onnec	TR at a the val tion siz	0.2 ba ve. this	1.57 1.35 r / /ଃ in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable bar / 2.9 p cy (kW)	0.89 0.91 0.91 $2 \times 1.0 = 5$ $1 \times 1.0 = $	0.94 0.95 .7 TR ty table, an 0°C / 14°F pacity, sel or greater drop acro	ect a bss 5 15	KVS 2.9 p Base the H exar	1.07 1.05 42 deli osig) pr ed on th KVS 42 mple.	1.16 1.11 vers 33 essure he requ is the p	3.32 kW drop a uired c proper	1.26 1.18 V / 9.5 across onnec select	1.40 1.26 TR at a the val tion siz	0.2 ba ve. ee of 1 ¹ this	1.57 1.35 r / /ଃ in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable bar / 2.9 p cy (kW)	0.09 0.91 0.91 $2 \times 1.0 = 5$ te capaci blumn for of t _e = -1 orator ca uivalent c pressure sig.	0.94 0.95 .7 TR ty table, an 0°C / 14°F oacity, sel or greater drop acro	ect a bss 5 15	KVS 2.9 p Base the H exar	1.07 1.05 42 deli osig) pr ed on th KVS 42 mple.	1.16 1.11 vers 33 essure he requ is the p	3.32 kW drop a uired c proper	1.26 1.18 V / 9.5 across onnec select	TR at a the val	0.2 ba ve. ee of 1 ¹ this	1.57 1.35 r / /® in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0 orator cap 20 kW / 5.7 appropriat pose the co mperature ected evapo ides an equ acceptable bar / 2.9 p cy (kW)	0.09 0.91 vacity is vacity is vacity is vacity is te capaci blumn for of $t_e = -1$ orator ca uivalent c pressure sig. 0.05	0.94 0.95 .7 TR ty table, an 0°C / 14°F oacity, sel or greater drop acro KV Pressure d	1 1 ect a oss S 15 rop Δp	KVS 2.9 p Base the H exar Ra [bar]	1.07 1.05 42 deli osig) preed on the KVS 42 mple. ted cap	1.16 1.11 vers 33 essure he requ is the p	3.32 kV drop a uired c proper	1.26 1.18 V / 9.5 across onnec select KV sure di	TR at a the val tion size ion for	0.2 bave. ve. this SI U bar]	1.57 1.35 r / /s in,
	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 00rator cap 20 kW / 5.7 appropriations the comperature ected evapore ides an equidacceptable bar / 2.9 p ty (kW) t _e [°C]	$\begin{array}{c c} 0.09 \\ \hline 0.91 \\ \hline 0.9$	0.94 0.95 .7 TR ty table, an 0°C / 14°F bacity, sel or greater drop acro KV Pressure d 0.1 0.2 .81 5.34	1. 1. 1. ect a oss 5 15 rop Δp 0.3	KVS 2.9 p Base the H exar [bar] 0.5	1.07 1.05 42 deli osig) pr ed on th KVS 42 nple. ted cap	1.16 1.11 vers 33 essure he requ is the p acity [k 0.05 25.5 21.0	3.32 kV drop a uired c proper w] Pres 0.1 36.0 29.6	1.26 1.18 V / 9.5 across onnect select KV: sure di 0.2	TR at a the val tion size ion for 5 42	0.2 bave. re of 1 ¹ this SI U bar] 0.5	1.57 1.35 r / /s in, <u>nits</u> 0.7
	R407C Corrected eval $Q_e = 20 \times 1.0 =$ Now select the R404A, and ch evaporating te Using the correvalve that prove capacity at an the valve of 0.2 Rated Capacit	0.88 0.88 00rator cap 20 kW / 5.7 appropriations cose the comperature ected evaporides an equidacceptable bar / 2.9 p ty (kW) t _e [°C] 10	$\begin{array}{c c} 0.09 \\ \hline 0.91 \\ \hline 0.9$	0.94 0.95 .7 TR ty table, an 0°C / 14°F bacity, sel or greater drop acro KV Pressure d 0.1 0.2 .65 6.52	1. 1. 1. ect a oss 5 15 rop Δp 0.3 7.93	KVS 2.9 p Base the H exar [bar] 0.5 10.1	1.07 1.05 42 deli osig) pr ed on th KVS 42 nple. ted cap ted cap	1.16 1.11 vers 33 essure he requ is the p acity [k 0.05 25.5	3.32 kV drop a uired c proper	1.26 1.18 V / 9.5 across onnec select KV3 sure di 0.2 50 5 41 4 33.3	1.40 1.26 TR at a the val tion siz ion for 5 42 rop Δp I 0.3 61.4 50.1 40.2	0.2 ba ve. ee of 1 ¹ this SI U bar] 0.5 78.1 63.7 50.3	1.57 1.35 r / /® in, /® in, nits 0.7 91.0 73.3 57.5
Step 2 Step 3	R407CCorrected eval $Q_e = 20 \times 1.0 =$ Now select theR404A, and chevaporating teUsing the correvalve that provide that	0.88 0.90 0.02	0.89 0.91 vacity is $x > 1.0 = 5$ te capaci blumn for of $t_e = -1$ orator ca uivalent of pressure sig. 0.05 0.3.30 4 2.20 1.75	0.94 0.95 .7 TR ty table, an 0°C / 14°F oacity, sel or greater drop acro KV Pressure d 0.1 0.2 .65 6.52 .81 5.34 09 4.30 .45 3.39	 1. 1. 1. ect a oss S 15 rop Δp 0.3 7.93 6.47 5.19 4.06	KVS 2.9 p Base the H exar (bar) 0.5 10.1 8.18 6.49 5.00	1.07 1.05 42 deli osig) pro- ed on the KVS 42 nple. ted cap ted cap 0.7 11.7 9.46 7.43 5.61	1.16 1.11 vers 33 essure requis the p acity [k 0.05 25.5 21.0 17.0 13.6	3.32 kV drop a uired c proper (W] Pres 0.1 36.0 29.6 23.9 19.0	1.26 1.18 V / 9.5 across onnec select select KV sure di 0.2 50.5 41.4 33.3 26.3	1.40 1.26 TR at a the val tion siz ion for 61.4 61.4 61.4 31.5	0.2 ba ve. e of 1 ¹ this SI U bar] 0.5 78.1 63.7 50.3 38.7	1.57 1.35 r / / ⁸ in, nits 0.7 91.0 73.3 57.5 43.5
	R407C Corrected eval $Q_e = 20 \times 1.0 =$ Now select the R404A, and ch evaporating te Using the correvalve that prove capacity at an the valve of 0.2 Rated Capacit	0.88 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0	0.89 0.91 vacity is $x > 1.0 = 5$ te capaci blumn for of $t_e = -1$ orator ca uivalent of pressure sig. 0.05 0.3.30 4 2.20 1.75 1.37	0.94 0.95 .7 TR ty table, an 0°C / 14°F oacity, sel or greater drop acro KV Pressure d 0.1 0.2 .81 5.34 09 4.30	1.0 1.0 1.0 ect a oss state state oss state state oss state state	KVS 2.9 p Base the H exar (bar) 0.5 10.1 8.18 6.49	1.07 1.05 42 deli osig) pr ed on th KVS 42 nple. ted cap ted cap 0.7 11.7 9.46 7.43	1.16 1.11 vers 33 essure be requis the p acity [k 0.05 25.5 21.0 17.0	3.32 kV drop a uired c proper wW] Pres 0.1 36.0 29.6 23.9	1.26 1.18 V / 9.5 across onnec select KV3 sure di 0.2 50 5 41 4 33.3	1.40 1.26 TR at a the val tion siz ion for 5 42 rop Δp I 0.3 61.4 50.1 40.2	0.2 ba ve. ee of 1 ¹ this SI U bar] 0.5 78.1 63.7 50.3	1.57 1.35 r / / ⁸ in, nits 0.7 91.0 73.3 57.5

SI units


Data sheet | Electric regulating valve type KVS 15 – KVS 42

Correction factor table

									инсэ
t₁ °C	10	15	20	25	30	35	40	45	50
R134a	0.88	0.92	0.96	1.0	1.05	1.10	1.16	1.23	1.31
R22	0.90	0.93	0.96	1.0	1.05	1.10	1.13	1.18	1.24
R404A / R507	0.84	0.89	0.94	1.0	1.07	1.16	1.26	1.40	1.57
R407C	0.88	0.91	0.95	1.0	1.05	1.11	1.18	1.26	1.35

Capacities

Rated Capacity (kW)

				KVS	515					KVS	5 42		
	t. [°C]		Pr	essure dr	op Δp [b	ar]			Pr	essure dr	op Δp [b	ar]	
	1 01	0.05	0.1	0.2	0.3	0.5	0.7	0.05	0.1	0.2	0.3	0.5	0.7
	10	2.94	4.12	5.73	6.91	8.62	9.84	22.75	31.92	44.43	53.54	66.82	76.28
R134a	0	2.38	3.33	4.60	5.50	6.75	7.56	18.46	25.81	35.67	42.65	52.32	58.56
RI34d	-10	1.90	2.64	3.61	4.26	5.07	5.46	14.72	20.47	27.96	33.00	39.27	42.29
	-20	1.48	2.05	2.74	3.15	3.52	3.55 ¹)	11.50	15.85	21.20	24.42	27.30	27.47 ¹⁾
	10	3.30	4.65	6.52	7.93	10.08	11.74	25.54	35.99	50.53	61.43	78.11	91.00
	0	2.71	3.81	5.34	6.47	8.18	9.46	21.01	29.56	41.37	50.14	63.35	73.30
R404A	-10	2.20	3.09	4.30	5.19	6.49	7.43	17.03	23.91	33.32	40.20	50.28	57.54
K404A	-20	1.75	2.45	3.39	4.06	5.00	5.61	13.58	19.00	26.29	31.47	38.72	43.47
	-30	1.37	1.91	2.60	3.08	3.67	3.97	10.61	14.76	20.18	23.85	28.47	30.78
	-40	1.04	1.44	1.92	2.22	2.49	2.50 ¹)	8.08	11.14	14.91	17.20	19.26	19.39 ¹)
	10	3.58	5.04	7.06	8.56	10.84	12.57	27.73	39.04	54.69	66.34	83.98	97.37
R407C	0	2.94	4.14	5.77	6.97	8.74	10.03	22.81	32.05	44.71	54.01	67.74	77.75
R407C	-10	2.39	3.34	4.63	5.55	6.86	7.74	18.48	25.88	35.87	43.03	53.14	59.94
	-20	1.90	2.64	3.62	4.29	5.16	5.62	14.70	20.48	28.07	33.26	39.96	43.56
	10	3.74	5.26	7.38	8.96	11.36	13.19	28.95	40.76	57.16	69.40	88.01	102.22
	0	3.14	4.41	6.16	7.45	9.38	10.80	24.30	34.16	47.73	57.74	72.66	83.70
R22	-10	2.60	3.64	5.06	6.09	7.57	8.60	20.12	28.21	39.21	47.17	58.63	66.60
R22	-20	2.12	2.96	4.07	4.85	5.90	6.54	16.40	22.90	31.55	37.59	45.75	50.67
	-30	1.69	2.35	3.18	3.73	4.36	4.57	13.10	18.18	24.68	28.92	33.79	35.44
	-40	1.32	1.81	2.39	2.71	2.89 ¹)	x ¹)	10.23	14.02	18.52	20.99	22.37 ¹)	x ¹)

* The valves in the capacity table refer to the evaporator capacity and based on liquid temperature

t=30°C, superheat= sub cooling = 0 K.
 * The conditions printed are the most common for the different refrigerants. Other conditions can be calculated with Danfoss calculation software CoolSelector*
 * The pressure drop across the valve is assumed to be the difference between evaporation pressure and suction pressure.
 The capacity of vapour flow will not increase for pressure drops above the critical pressure drop.

Correction factor table

US uni										
t, °F	50	60	70	80	90	100	110	120		
R134a	0.79	0.82	0.86	0.90	0.95	1.0	1.06	1.13		
R22	0.82	0.85	0.88	0.92	0.96	1.0	1.05	1.10		
R404A / R507	0.71	0.75	0.80	0.85	0.92	1.0	1.10	1.24		
R407C	0.78	0.81	0.85	0.89	0.94	1.0	1.07	1.15		

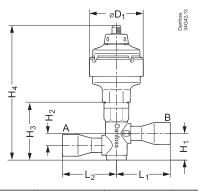
Capacities

Rated Capacity (TR) (TR) = ton of refrigerants

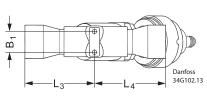
		KVS15							KVS 42								
	t. [°F]		Pr	essure di	op ∆p [p	si]		Pressure drop ∆p [psi]									
		0.7	1.5	3	5	7	10	0.7	1.5	3	5	7	10				
	50	0.86	1.25	1.73	2.19	2.53	2.91	6.65	9.66	13.44	16.96	19.60	22.58				
R134a	30	0.68	0.98	1.36	1.69	1.93	2.17	5.28	7.63	10.53	13.12	14.96	16.83				
R134d	10	0.53	0.76	1.03	1.26	1.40	1.49	4.10	5.88	7.99	9.74	10.82	11.58				
	-5	0.43	0.61	0.82	0.96	1.03	1.03 ¹)	3.34	4.74	6.32	7.46	7.95	8.01 ¹)				
	50	0.98	1.43	2.00	2.56	3.00	3.53	7.59	11.06	15.53	19.84	23.23	27.33				
	30	0.79	1.15	1.61	2.04	2.38	2.78	6.12	8.90	12.45	15.83	18.45	21.52				
R404A	10	0.63	0.91	1.26	1.59	1.84	2.12	4.85	7.03	9.78	12.34	14.26	16.41				
N404A	-5	0.52	0.75	1.04	1.29	1.48	1.67	4.01	5.81	8.02	10.03	11.47	12.97				
	-20	0.42	0.61	0.83	1.03	1.15	1.26	3.28	4.72	6.46	7.95	8.94	9.80				
	-40	0.32	0.45	0.60	0.71	0.76	0.77 ¹)	2.44	3.47	4.64	5.50	5.89	5.95 ¹)				
	50	1.05	1.53	2.14	2.72	3.18	3.72	8.12	11.82	16.55	21.09	24.62	28.81				
R407C	30	0.84	1.23	1.71	2.16	2.50	2.90	6.54	9.50	13.24	16.75	19.40	22.44				
N407C	10	0.67	0.96	1.33	1.67	1.91	2.16	5.17	7.47	10.33	12.91	14.77	16.71				
	-5	0.55	0.79	1.08	1.33	1.50	1.64	4.26	6.14	8.40	10.34	11.62	12.73				
	50	1.08	1.58	2.21	2.82	3.30	3.87	8.40	12.24	17.16	21.88	25.58	29.99				
	30	0.89	1.30	1.81	2.30	2.67	3.10	6.92	10.06	14.04	17.80	20.68	24.01				
R22	10	0.72	1.05	1.45	1.82	2.10	2.39	5.60	8.11	11.25	14.13	16.24	18.54				
RZZ	-5	0.61	0.88	1.21	1.50	1.70	1.90	4.72	6.81	9.36	11.62	13.18	14.69				
	-20	0.51	0.73	0.99	1.20	1.33	1.42	3.92	5.62	7.64	9.30	10.31	10.99				
	-40	0.39	0.54	0.72	0.83	0.86 ¹)	x ¹)	2.98	4.22	5.56	6.43	6.64 ¹)	x ¹)				

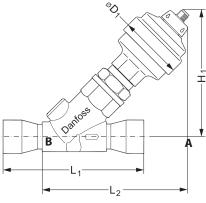
The valves in the capacity table refer to the evaporator capacity and based on liquid temperature $t_{i}\!=\!86^\circ\!F_{r}$ superheat= sub cooling = 0 K. *

* The conditions printed are the most common for the different refrigerants.


Other conditions can be calculated with Danfoss calculation software CoolSelector[®]
 * The pressure drop across the valve is assumed to be the difference between evaporation pressure and suction pressure.
 *) The capacity of vapour flow will not increase for pressure drops above the critical pressure drop.

ENGINEERING TOMORROW


Dimensions and weights


KVS 15

	Connections		H ₁		H ₂		H ₃		H ₄		L ₁		L ₂		øD ₁		Weight	
Туре	ODF x ODF (A x B)		[in] [mm]		[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[kg]	[lb.]
	[in]	[mm]	[111]	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[]]]	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[111]	[]	[]	[]	[111]	[]	[]	[]	[111]	[]	[Kg]	[10.]
	$\frac{5}{8} \times \frac{5}{8}$	16 × 16	1 2	20	0.5	12	25	64	F 0	150	2.4	60	24		24	60	0.7	1.5
KVS 15	$^{7}/_{8} \times ^{7}/_{8}$	22 × 22	1.2	30	0.5	13	2.5	64	5.9	159	2.4	60	2.4	60	2.4	60	0.7	1.5

KVS 42

Туре	Connections		H ₁		L ₁		L ₂		L ₃		L ₄		øD ₁		B ₁		Weight	
	ODF x ODF (A x B)		[in]	[in] [mm]		[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[kg]	[lb.]
	[in]	[mm]	[]	[]	[in]	[]	[]	[]		[]	[]	[]	[]	[]	[]	[]	[K9]	[10.]
	$^{7}/_{8} \times ^{7}/_{8}$	22 × 22	4.8	120	7.4	188.5	5.6	143	3.7	93	3.8	95.5	2.4	60	0.95	24	1.9	4.2
KVS 42	$1^{1}/_{8} \times 1^{1}/_{8}$	28 × 28	4.8	120	6.7	168.5	5.6	143.0	3.3	83.0	3.4	85.5	2.4	60	0.95	24	1.9	4.2
KVJ 42	$1^{3}/_{8} \times 1^{3}/_{8}$	35 × 35	4.8	120	7.0	178.5	5.6	143.0	3.5	88.0	3.6	90.5	2.4	60	0.95	24	1.9	4.2
	1 ⁵ / ₈ × 1 ⁵ / ₈	-	4.8	120	7.4	188.5	5.6	143.0	3.7	93.0	3.8	95.5	2.4	60	0.95	24	1.9	4.2

Related products

Image: 1 Image: 1			Code no. 034G0013			
EKD 316 driver	EKC 368 controller	AKS 11 / AKS 12 temperature sensor AKS pressure transmitter	AST-G service driver			

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.