ENGINEERING TOMORROW

Data Sheet

Verdichterüberströmventil Typ **POV**

Zum Schutz der Verdichter vor Überdruck entwickelt

Das pilotgesteuerte Überströmventil POV wird in Verbindung mit dem Sicherheitsventil BSV eingesetzt und wurde speziell zum Schutz der Verdichter vor Überdruck entwickelt.

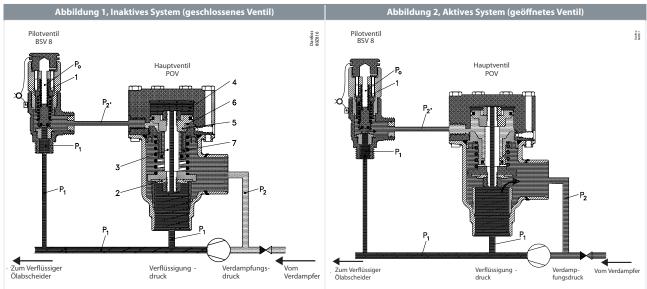
Merkmale

- Geeignet für die Kältemittel HFCKW, FKW, R717 (Ammoniak), R744 (CO₂).
- Das pilotgesteuerte interne Verdichterüberströmventil System POV + BSV ist in Größen von DN 40 bis DN 80 erhältlich.
- POV + BSV ist ein internes Verdichterüberströmsystem, wodurch das Risiko eines Kältemittelaustritts in die Atmosphäre eleminiert wird.
- Das System bietet selbst bei steigendem Gegendruck vollen Verdichterschutz.
- Das Verdichterüberströmventil (Hauptventil) POV hat, verglichen mit direktgesteuerten gegendruckunabhängigen Sicherheitsventilen, selbst bei hohem Gegendruck eine sehr große Leistung.
- Kleine Abmessungen ermöglichen eine einfache Handhabung und Installation.
- Zulassungen: DNV, CRN, BV, EAC usw. Für eine aktuelle Zulassungsliste der Produkte wenden Sie sich bitte an Ihre Danfoss-Niederlassung vor Ort.

Funktion

Pilotventil BSV 8

Das Pilotventil wird durch den Hochdruck P_1 und den Gegendruck P_2 " angetrieben. Der Referenzdruck im Edelstahlbalg (1) P_0 ist der Umgebungsdruck. Die wirksame Fläche des Balgs entspricht der Fläche des Ventilsitzes, so dass der Gegendruck P_2 " nicht den Öffnungsdruck des Ventils beeinflusst.


Hauptventil POV

Das Hauptventil ist vom Typ "stromlos geschlossen" (NC). Der Hochdruck P_1 wirkt auf die Ventileintrittsseite des Ventilkegels (2). Der Druck P_1 gelangt ebenfalls durch die Kolbenstange (3) in die obere Kammer (4) des Ventils, das auf die Oberseite des Kolbens (5) einwirkt. Die Fläche des Kolbens ist größer als die Fläche des Ventilsitzes, wodurch das Ventil zusammen mit der Federkraft geschlossen gehalten wird.

System BSV 8 + POV

Wenn der Druck P_1 den eingestellten Druck des Pilotventils erreicht, beginnt es sich zu öffnen. Der Druck der Pilotleitung P_2 " und der unteren Kammer (6) des Hauptventils steigt. Der Durchfluss durch die Düse (7) begrenzt den Druck der unteren Kammer. Wenn der Durchfluss durch das Pilotventil die Leistung der Düse übersteigt, steigt der Druck in der Kammer (6), wodurch das Hauptventil geöffnet wird. Wenn der Druck P_1 abgebaut wird, schließt sich das Pilotventil und der Druck P_2 " wird durch die Düse (7) ausgeglichen. Die Feder schließt dann das Hauptventil. Die Schließdauer beträgt \leq 30 s.

Tabelle 1: Funktion

Installation des Verdichterüberströmventils POV + BSV

Eingestellter Ansprechdruck

Der werkseitig eingestellte Druck von BSV 8 liegt im Bereich von 15 bis 25 bar(g) (218 bis 363 psig), wobei 15 bar(g) der Mindestwert für diese Anwendung ist Bild 6: Leistung – POV 600.

Druck-Standardeinstellungen

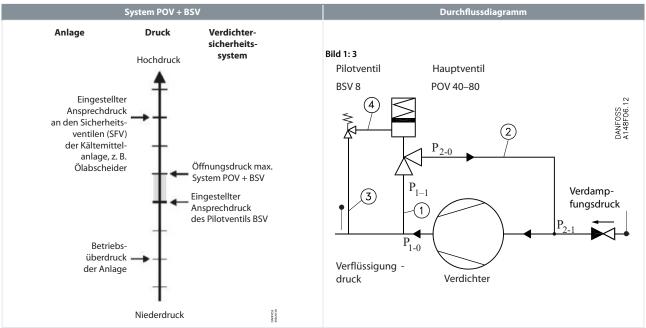
18,0, 21,0 oder 25,0 bar(g) (261, 305 oder 363 psig). Der Betriebsdruck der Anlage sollte mindestens 15 % unter dem eingestellten Ansprechdruck des Pilotventils liegen, und der Öffnungsdruck des Pilotventils (pset + 10 %) muss unter dem Schließdruck des Sicherheitsventils liegen, das die Anlage schützt. Dies bedeutet einen einwandfreien Betrieb der Anlage.

Gegendruck

 P_{2-0} ist der effektive Gegendruck des POV-Hauptventils $P_{2-0} = P_{2-1} + \Delta P_{Austritt'}$ wobei ΔPA ustritt der Druckverlust in der Austrittsleitung des POV (2) ist.

P₂₋₁ entspricht in der Regel dem Verdampfungsdruck.

P₂₋₀ darf die Grenzwerte in Bild 6: Leistung – POV 600 nicht überschreiten.


Druckverlust in der Eintrittsleitung

Der Druckverlust in der Eintrittsleitung des POV (1) hat keine Auswirkungen auf die Funktion von System POV + BSV, allerdings verringert ein hoher Druckabfall die Leistung. Wenn der Druckabfall in der Eintrittsleitung $\Delta P_{Fintritt}$ mehr als 3 % des Öffnungsdrucks beträgt, muss der Leistungsabfall in der Berechnung berücksichtigt werden.

Druckabfall in der Piloteintrittsleitung

Um eine ordnungsgemäße Funktion des Systems POV + BSV sicherzustellen, muss das Pilotventil durch den Anlagendruck aktiviert werden. Es ist wichtig, dass die Eintrittsleitung des Pilotventils so angebracht ist, dass sichergestellt wird, dass der Pilotdruck mit dem Anlagendruck übereinstimmt. Wenn der Pilotdruck in der Eintrittsleitung des POV-Ventils angebracht ist, muss sichergestellt werden, dass der Druckabfall in der Pilot-Eintrittsleitung (3) $\Delta P_{\text{Eintritt}}$ nicht mehr als 3 % des Öffnungsdrucks beträgt.

Tabelle 2: Installation des Verdichters

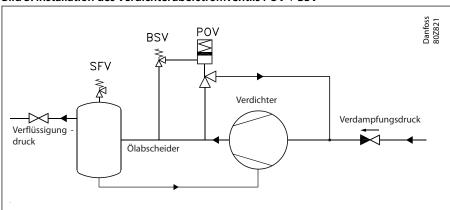
Gegendruck max. bar (g) 3 ambss 102318 20 18 16 14 12 10 8 6 2 0+ 14 21 22 23 24 25 Eingestellter Ansprechdruck bar (g)

Bild 2: Abbildung 4, Einsatzbereich BSV 8 - POV

Wichtig: Bei der Positionierung des Pilotventils in der Eintrittsleitung muss beachtet werden, dass der Anschluss in der Gasphase angebracht wird und nicht in einer Ölphase, falls vorhanden.

- · Druckabfall in der Pilotaustrittsleitung
- Der Druckverlust in der BSV-Austrittsleitung (4) $\Delta P_{\text{P-Austritt}}$ ist nicht kritisch.
- Innendurchmesser der Pilotaustrittsleitung min. 8 mm (0,314 Zoll)
- Länge der Pilotaustrittsleitung max. 1 m (3,25 ft)

Hinweis: Die oben genannten Richtlinien gewährleisten eine sichere Funktion des Systems POV + BSV; es kann jedoch Einschränkungen seitens nationaler Behörden geben.


HINWEIS:

Der Ventiltyp POV ist als Verdichterüberströmventil-Zubehör (nicht als Sicherheitszubehör) klassifiziert. Daher muss ein Sicherheitsventil (z. B. SFV) installiert sein, mit dem das System vor Überdruck geschützt wird.

Abbildung 5 zeigt eine typische Anwendung des Systems POV + BSV. Im Beispiel wurden in der Saugleitung ein Rückschlagventil und in der Druckleitung ein Absperrventil eingebaut. Es ist eine bewährte Lösung und entspricht einer Forderung der Behörden in den meisten Ländern, ein Sicherheitsventil am Ölabscheider zu installieren.

Wenn das Absperrventil in der Druckleitung geschlossen ist und die gesamte Regelungsausrüstung ausfällt, steigt der Druck nach dem Verdichter und das System BSV + POV wird aktiviert. Sofern die erforderliche Motorleistung vorhanden ist, kommt es zu einem Temperaturanstieg durch die Verdichtungsarbeit und anschließend zu einem Druckanstieg. Daher muss das Sicherheitsventil des Ölabscheiders zusätzlich zu der Auslegung für die "normale" Wärmezufuhr auch für die Wärmezufuhr entsprechend der Motorleistung ausgelegt sein.

Bild 3: Installation des Verdichterüberströmventils POV + BSV

Medium

Kältemittel

Geeignet für die Kältemittel HFCKW, FKW, R717 (Ammoniak), R744 (CO_2). Die Verwendung mit brennbaren Kohlenwasserstoffen ist nicht freigegeben! Für weitere Informationen wenden Sie sich bitte an Ihren Ansprechpartner von Danfoss vor Ort.

New refrigerants

Danfoss products are continually evaluated for use with new refrigerants depending on market requirements.

When a refrigerant is approved for use by Danfoss, it is added to the relevant portfolio, and the R number of the refrigerant (e.g. R513A) will be added to the technical data of the code number. Therefore, products for specific refrigerants are best checked at store.danfoss.com/en/, or by contacting your local Danfoss representative.

Produktspezifikation

Druck- und Temperaturdaten

Tabelle 3: Druck- und Temperaturdaten

Merkmale	Beschreibung
Regelbereich	15–25 bar(g) (218–363 psig)
Festigkeitsprüfung	50 bar(g) (725 psig)
Leckageprüfung	25 bar(g) (363 psig)
PB/MWP	40 bar (580 psig)
Temperaturbereich	-50/+150 °C (-58/+302 °F)

Ausführung

Regelung/Kennzeichnung

Alle Pilotventile (Sicherheitsventile BSV 8) werden vor Verlassen von Danfoss A/S eingestellt, überprüft und versiegelt. Danfoss kann daher nur dann einen ordnungsgemäßen Betrieb gewährleisten, solange die Versiegelung unbeschädigt bleibt.

Transport/Handhabung

POV und BSV werden von Danfoss separat geliefert. Die Sicherheitsventile BSV haben spezielle Schutzkappen und werden in eigens dafür angefertigten Kartons versendet. POV-Ventile sind mit Schutzkappen versehen. Es ist wichtig darauf zu achten, dass die Schutzkappen bis zur Montage auf dem Ventil bleiben. Um einen exakten und präzisen Betrieb sicherzustellen, muss das Ventil sorgfältig gehandhabt werden.

Neukalibrierung/Wartung

In bestimmten Ländern wird von den Behörden verlangt, dass die Ventile mindestens ein Mal jährlich neu eingestellt werden (siehe Bestimmungen vor Ort).

Leistung

Die Bauweise des Verdichterströmventils wurde vom TÜV geprüft und zugelassen. Diese Prüfung umfasst die Ventilfunktion sowie die Messung der Abblasleistung, die anhand der Kurven und Tabellen auf den folgenden Seiten dargestellt wird.

Installation

Damit das Ventil exakt arbeiten kann, muss es so eingebaut werden, dass das Federgehäuse nach oben zeigt (siehe "Installation des Verdichterüberlaufventils POV + BSV" auf den folgenden Seiten).

Nach der Installation des Ventils muss der Einfluss von statischer, dynamischer und thermischer Belastung vermieden werden.

Anschlüsse

Erhältlich mit folgenden Anschlüssen:

- Schweißanschluss DIN (2448)
- Schweißanschluss ANSI (B 36.10)
- o DN 40, Liste 80
- o DN 65 80, Liste 40

Bild 4: DIN

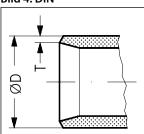


Tabelle 4: Schweißanschluss DIN (2448)

Version	Größe	Größe	øD	Т	øD	Т
version	mm	Zoll	mm	mm	Zoll	Zoll
POV 600	40	11/2	48,3	2,6	1,902	0,103
POV 1050	65	21/2	76,1	2,9	3	0,11
POV 2150	80	3	88,9	3,2	3,5	0,13

Bild 5: ANSI

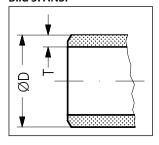


Tabelle 5: Anschweißende ANSI (B 36.10)

Version	Größe	Größe	øD	Т	øD	Т	Schedule
version	mm	Zoll	mm	mm	Zoll	Zoll	Scriedule
POV 600	40	11/2	48,3	5,1	1,902	0,201	Liste 80
POV 1050	65	21/2	73	5.2	2,87	0,2	Liste 40
POV 2150	80	3	88,9	5,5	3,5	0,22	Liste 40

Leistung

Die Werte in der Tabelle basieren auf gesättigtem Gas bei einer Überhitzung von 50 K. Wenn andere Betriebsbedingungen berücksichtigt werden müssen, können die Formeln oder das Computerprogramm (Coolselector®2) von Danfoss verwendet werden.

Tabelle 6: Tabelle 1

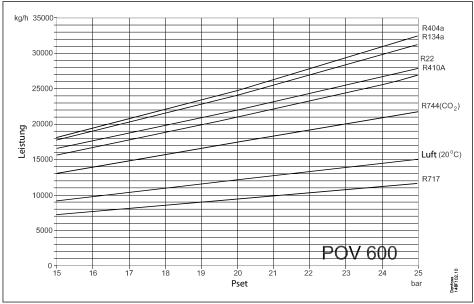
Version	Nenn	weite	Durchflussquerschnitt	Durchflussfläche	Abgeleiteter Entlas- tungskoeffizient	
	Eintritt	Austritt	d _o	A _o	K _{dr}	
POV 600	40 mm	40 mm	32,6 mm	835 mm ²	0,735	
POV 600	1½ Zoll	1½ Zoll	1,28 Zoll	1,28 Zoll ²	0,733	
POV 1050	65 mm	65 mm	39,8 mm	1244 mm ²	0.850	
POV 1030	2½ Zoll	2½ Zoll	1,56 Zoll	1,93 Zoll ²	0,859	
POV 2150	80 mm	80 mm	59 mm	2734 mm ²	0.700	
POV 2130	3 Zoll	3 Zoll	2,32 Zoll	4,24 Zoll ²	0,799	

Die Überströmleistung der Verdichterüberströmventile basiert auf ISO 4126-1/EN 1268-1/prEN 1313 6 (1998).

$$q_{m}\,=\,0.2883\,\times\,C\,\times\,A_{0}\,\times\,K_{dr}\,\times\,K_{b}\,\times\!\sqrt{\frac{P}{V}}$$

- **q**_m Überströmleistung (kg/h)
- C Überströmfunktion je nach Kältemittel (κ) siehe Tabelle 2 (-)
- **A**₀ Durchflussbereich des Verdichterüberströmventils (mm²).
- $\mathbf{K_{dr}}$ Gedrosselter Koeffizient der Überströmung($\mathbf{K_{dr}} = \mathbf{K_{d}} \times 0.9$), (der Kdr ist vom TÜV zertifiziert) siehe Tabelle 1. (-)
- **K**_b Korrekturfaktur bei unterkritischem Durchfluss. (-) $K_b = 1,0$ wenn der Gegendruck ca. $0,5 \times$ niedriger ist als der Entlastungsdruck ($P_b < 0,5 \times p$). Für alle Sicherheitsventile BSV gilt Kb = 1,0
- Spezifisches Dampfvolumen. (m³/kg)
- **p**_{set} Ansprechdruckeinstellung, der voreingestellte Druck, bei dem ein Verdichterüberströmventil im Betrieb zu öffnen beginnt (pset ist auf dem Metallschild auf dem Sicherheitsventil angegeben). (bar gauge)
- **p**_{atm} Umgebungsdruck (1 bar)
- P Entlastungsdruck, $p = pset \times 1,1 + Patm$ (bar absolut)

Weitere Angaben in den oben genannten Normen ISO bzw. EN.


Wichtig!

Bei einem Gegendruck von mehr als $0.5 \times p$ muss bei der Berechnung der Leistung das Computerprogramm (DIRcalc^m) von Danfoss oder der oben genannte Standard verwendet werden.

Tabelle 7: Tabelle 2 Eigenschaften von Kältemitteln

Kältemittelkennung	lsentropenexponent K	Abblasefunktion C
R 22	1,17	2,54
R134a	1,12	2,50
R404A	1,12	2,49
R 410A	1,17	2,54
R717 (Ammoniak)	1,31	2,64
R 744 (CO ₂)	1,30	2,63
Luft	1,40	2,70

Bild 6: Leistung - POV 600

$$q_{m} \,=\, 0.2883 \,\times\, C \,\times\, A_{0} \,\times\, K_{dr} \,\times\, K_{b} \,\times\! \sqrt{\frac{P}{V}}$$

- \mathbf{P}_{set} Eingestellter Ansprechdruck in bar(g)
- **P** Ansprechdruck in bar(g)
- **C** Abblasefunktion
- v Spezifisches Dampfvolumen unter Ansprechdruck des Ventils p in (m³/kg)
- $\mathbf{q}_{\mathbf{m}}$ Überströmleistung in kg/h
- **K**_h Korrekturfaktor bei unterkritischem Durchfluss
- **d** Durchflussquerschnitt Sitz mm²
- **A_o** Durchflussbereich Sitz in mm²
- $\mathbf{K}_{\mathbf{dr}}$ Herabgesetzter Entladekoeffizient bei definierter Hubhöhe

Tabelle 8: Leistung – POV 600

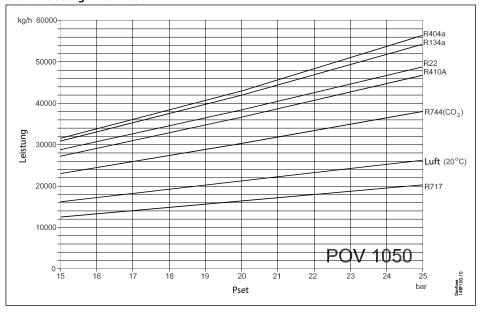

P,	set	F	•	R22	q	m	R134a	q _m		R404a	R404a q _m		R717	17 q _m	
bar(g)	psig	bar(g)	psig	V	kg/h	lb/min	V	kg/h	lb/min	V	kg/h	lb/min	V	kg/h	lb/min
10	145	12	174	0,01974	11077	407	0,01655	11907	437	0,01629	11953	439	0,10753	4933	181
11	160	13,1	190	0,01797	12130	446	0,01502	13059	480	0,0147	13147	483	0,09867	5380	198
12	174	14,2	206	0,01638	13228	486	0,01383	14169	521	0,01346	14305	526	0,0913	5823	214
13	189	15,3	222	0,01514	14281	525	0,01273	15330	563	0,01233	15514	570	0,08461	6279	231
14	203	16,4	238	0,014	15376	565	0,01172	16475	605	0,01128	16793	617	0,079	6728	247
15	218	17,5	254	0,01311	16414	603	0,01094	17685	650	0,01048	17997	661	0,07383	7189	264
16	232	18,6	270	0,01229	17477	642	0,01007	19004	698	0,00973	19256	708	0,06998	7613	280
17	247	19,7	286	0,01152	18578	683	0,0094	20243	744	0,00902	20582	756	0,06636	8045	296
18	261	20,8	302	0,0108	19716	724	0,00888	21400	786	0,00842	21889	804	0,06213	8544	314
19	276	21,9	318	0,01012	20899	768	0,00828	22741	836	0,00786	23247	854	0,05898	8998	331
20	290	23	334	0,00961	21978	808	0,00775	24089	885	0,00738	24586	903	0,0562	9446	347
21	305	24,1	350	0,00908	23145	850	0,00727	25459	935	0,00688	26066	958	0,0535	9910	364
22	319	25,2	365	0,00861	24305	893	0,00685	26820	985	0,00645	27528	1011	0,05121	10358	381
23	334	26,3	381	0,0081	25599	941	0,00645	28235	1037	0,00606	29013	1066	0,049	10818	397
24	348	27,4	397	0,00768	26834	986	0,00606	29733	1092	0,00565	30670	1127	0,04687	11290	415
25	363	28,5	413	0,00738	27918	1026	0,00574	31158	1145	0,0053	32295	1187	0,04514	11733	431
26	377	29,6	429	0,00699	29235	1074	0,00541	32707	1202	0,00496	34022	1250	0,04348	12183	448
27	392	30,7	445	0,0067	30410	1117	0,00506	34442	1266	0,00463	35862	1318	0,0415	12700	467
28	406	31,8	461	0,00634	31817	1169	0,00479	36028	1324	0,00429	37918	1393	0,0401	13149	483
29	421	32,9	477	0,00607	33075	1215	0,00453	37683	1385	0,00401	39892	1466	0,0387	13615	500
30	435	34	493	0,00579	34426	1265	0,00422	39690	1458	0,00371	42161	1549	0,0373	14098	518
31	450	35,1	509	0,00552	35824	1316	0,00392	41842	1537	0,00339	44814	1647	0,03612	14556	535
32	464	36,2	525	0,00523	37376	1373	0,00365	44036	1618	0,003	48378	1778	0,03482	15056	553
33	479	37,3	541	0,00499	38841	1427	0,00337	46520	1709	0,00206	59262	2178	0,0337	15535	571
34	493	38,4	557	0,00475	40393	1484	0,00306	49534	1820				0,03276	15987	587
35	508	39,5	573	0,00452	41997	1543	0,00275	52994	1947				0,03158	16514	607
36	522	40,6	589	0,00428	43755	1608	0,00221	59933	2202				0,03083	16945	623
37	537	41,7	605	0,00408	45418	1669							0,02972	17491	643
38	551	42,8	621	0,00389	47124	1731							0,02901	17935	659
39	566	43,9	637	0,00365	49269	1810							0,02815	18440	678
40	580	45	653	0,00345	51308	1885							0,0274	18923	695

Tabelle 9: Leistung – POV 600 (Fortsetzung)

labelle 9. Leistung – POV 000 (Portse								P744				
P,	set	P	•	Luft (20 °C)	q	l _m	R410a	q	l _m	R744 (CO ₂)	q	m
bar(g)	psig	bar(g)	psig	V	kg/h	lb/min	V	kg/h	lb/min	V	kg/h	lb/min
10	145	12	174	0,0679	6349	233	0,02213	10461	384	0,03196	9014	331
11	160	13,1	190	0,0622	6931	255	0,02022	11435	420	0,0293	9836	361
12	174	14,2	206	0,05738	7513	276	0,01848	12453	458	0,0269	10688	393
13	189	15,3	222	0,05325	8095	297	0,0169	13517	497	0,02514	11476	422
14	203	16,4	238	0,04968	8676	319	0,01569	14525	534	0,02352	12283	451
15	218	17,5	254	0,04656	9258	340	0,01457	15570	572	0,02201	13117	482
16	232	18,6	270	0,04381	9840	362	0,01353	16657	612	0,02061	13974	513
17	247	19,7	286	0,04136	10422	383	0,01275	17659	649	0,01932	14854	546
18	261	20,8	302	0,03917	11004	404	0,01201	18696	687	0,01825	15704	577
19	276	21,9	318	0,03721	11586	426	0,01132	19760	726	0,01726	16570	609
20	290	23	334	0,03543	12168	447	0,0106	20927	769	0,01645	17394	639
21	305	24,1	350	0,03381	12750	468	0,00995	22110	812	0,0156	18283	672
22	319	25,2	365	0,03233	13332	490	0,00944	23212	853	0,01485	19162	704
23	334	26,3	381	0,03098	13914	511	0,00887	24463	899	0,0142	20019	736
24	348	27,4	397	0,02974	14496	533	0,00847	25552	939	0,01355	20918	769
25	363	28,5	413	0,02859	15078	554	0,00795	26899	988	0,01299	21789	801
26	377	29,6	429	0,02753	15660	575	0,00758	28074	1032	0,01239	22736	835
27	392	30,7	445	0,02654	16242	597	0,00722	29295	1076	0,01185	23677	870
28	406	31,8	461	0,02562	16824	618	0,00687	30565	1123	0,01145	24515	901
29	421	32,9	477	0,02477	17406	640	0,00653	31888	1172	0,01093	25521	938
30	435	34	493	0,02396	17988	661	0,00621	33242	1221	0,01059	26358	968
31	450	35,1	509	0,02321	18570	682	0,00589	34681	1274	0,01015	27355	1005
32	464	36,2	525	0,02251	19152	704	0,00558	36185	1330	0,00978	28301	1040
33	479	37,3	541	0,02184	19734	725	0,0053	37688	1385	0,00948	29179	1072
34	493	38,4	557	0,02122	20316	746	0,00508	39059	1435	0,0091	30217	1110
35	508	39,5	573	0,02063	20898	768	0,00478	40839	1501	0,00875	31254	1148
36	522	40,6	589	0,02007	21479	789	0,00455	42437	1559	0,00847	32206	1183
37	537	41,7	605	0,01954	22062	811	0,0043	44241	1626	0,0082	33172	1219
38	551	42,8	621	0,01904	22643	832	0,00409	45957	1689	0,00794	34153	1255
39	566	43,9	637	0,01856	23225	853	0,00385	47973	1763	0,00768	35169	1292
40	580	45	653	0,01811	23808	875	0,00362	50089	1840	0,00743	36201	1330

Bild 7: Leistung – POV 1050

$$q_{m}\,=\,0.2883\,\times\,C\,\times\,A_{0}\,\times\,K_{dr}\,\times\,K_{b}\,\times\!\sqrt{\frac{P}{V}}$$

- $\mathbf{P}_{\mathsf{set}}$ Eingestellter Ansprechdruck in bar(g)
- Ρ Ansprechdruck in bar(g)
- C Abblasefunktion
- Spezifisches Dampfvolumen unter Ansprechdruck des Ventils p in (m³/kg)
- Überströmleistung in kg/h q_{m}
- Korrekturfaktor bei unterkritischem Durchfluss K
- Durchflussquerschnitt Sitz mm² d
- Durchflussbereich Sitz in mm² A_o
- \mathbf{K}_{dr} Herabgesetzter Entladekoeffizient bei definierter Hubhöhe

Tabelle 10: Leistung – POV 1050

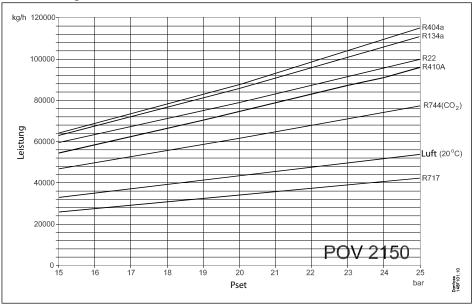

P _s	et	P		R22	q	m	R134a	q,	n	R404a	q _n	n	R717	q	m
bar(g)	psig	bar(g)	psig	V	kg/h	lb/min	V	kg/h	lb/min	V	kg/h	lb/min	v	kg/h	lb/min
10	145	12	174	0,01974	19295	709	0,01655	20741	762	0,01629	20822	765	0,10753	8593	316
11	160	13,1	190	0,01797	21129	776	0,01502	22748	836	0,0147	22902	841	0,09867	9372	344
12	174	14,2	206	0,01638	23042	847	0,01383	24681	907	0,01346	24918	916	0,0913	10144	373
13	189	15,3	222	0,01514	24878	914	0,01273	26703	981	0,01233	27024	993	0,08461	10938	402
14	203	16,4	238	0,014	26785	984	0,01172	28698	1054	0,01128	29252	1075	0,079	11719	431
15	218	17,5	254	0,01311	28592	1051	0,01094	30807	1132	0,01048	31350	1152	0,07383	12523	460
16	232	18,6	270	0,01229	30444	1119	0,01007	33104	1216	0,00973	33542	1232	0,06998	13261	487
17	247	19,7	286	0,01152	32362	1189	0,0094	35262	1296	0,00902	35853	1317	0,06636	14015	515
18	261	20,8	302	0,0108	34344	1262	0,00888	37279	1370	0,00842	38130	1401	0,06213	14883	547
19	276	21,9	318	0,01012	36405	1338	0,00828	39613	1456	0,00786	40495	1488	0,05898	15674	576
20	290	23	334	0,00961	38285	1407	0,00775	41961	1542	0,00738	42828	1574	0,0562	16455	605
21	305	24,1	350	0,00908	40317	1481	0,00727	44348	1630	0,00688	45405	1668	0,0535	17264	634
22	319	25,2	365	0,00861	42338	1556	0,00685	46718	1717	0,00645	47953	1762	0,05121	18043	663
23	334	26,3	381	0,0081	44593	1638	0,00645	49185	1807	0,00606	50540	1857	0,049	18844	692
24	348	27,4	397	0,00768	46744	1718	0,00606	51793	1903	0,00565	53425	1963	0,04687	19666	723
25	363	28,5	413	0,00738	48632	1787	0,00574	54275	1994	0,0053	56257	2067	0,04514	20438	751
26	377	29,6	429	0,00699	50925	1871	0,00541	56975	2093	0,00496	59265	2178	0,04348	21223	780
27	392	30,7	445	0,0067	52974	1946	0,00506	59997	2205	0,00463	62470	2295	0,0415	22123	813
28	406	31,8	461	0,00634	55424	2036	0,00479	62760	2306	0,00429	66051	2427	0,0401	22905	842
29	421	32,9	477	0,00607	57614	2117	0,00453	65642	2412	0,00401	69489	2553	0,0387	23716	871
30	435	34	493	0,00579	59969	2203	0,00422	69138	2540	0,00371	73442	2699	0,0373	24557	902
31	450	35,1	509	0,00552	62404	2293	0,00392	72886	2678	0,00339	78063	2868	0,03612	25356	932
32	464	36,2	525	0,00523	65107	2392	0,00365	76708	2819	0,003	84273	3096	0,03482	26226	964
33	479	37,3	541	0,00499	67660	2486	0,00337	81035	2978	0,00206	103232	3793	0,0337	27061	994
34	493	38,4	557	0,00475	70363	2585	0,00306	86286	3170				0,03276	27848	1023
35	508	39,5	573	0,00452	73157	2688	0,00275	92314	3392				0,03158	28767	1057
36	522	40,6	589	0,00428	76220	2801	0,00221	104400	3836				0,03083	29517	1085
37	537	41,7	605	0,00408	79116	2907							0,02972	30468	1120
38	551	42,8	621	0,00389	82087	3016							0,02901	31243	1148
39	566	43,9	637	0,00365	85825	3154							0,02815	32121	1180
40	580	45	653	0,00345	89377	3284							0,0274	32963	1211

Tabelle 11: Leistung – POV 1050 (Fortsetzung)

P	set	P	_	Luft (20 °C)	Ç	l _m	R410a	C	l _m	R744 (CO ₂)	q	m
bar(g)	psig	bar(g)	psig	v	kg/h	lb/min	v	kg/h	lb/min	V	kg/h	lb/min
10	145	12	174	0,0679	11059	406	0,02213	18223	670	0,03196	15701	577
11	160	13,1	190	0,0622	12073	444	0,02022	19919	732	0,0293	17134	630
12	174	14,2	206	0,05738	13087	481	0,01848	21693	797	0,0269	18617	684
13	189	15,3	222	0,05325	14100	518	0,0169	23547	865	0,02514	19990	735
14	203	16,4	238	0,04968	15114	555	0,01569	25301	930	0,02352	21397	786
15	218	17,5	254	0,04656	16128	593	0,01457	27122	997	0,02201	22849	840
16	232	18,6	270	0,04381	17141	630	0,01353	29016	1066	0,02061	24343	894
17	247	19,7	286	0,04136	18155	667	0,01275	30761	1130	0,01932	25875	951
18	261	20,8	302	0,03917	19169	704	0,01201	32568	1197	0,01825	27356	1005
19	276	21,9	318	0,03721	20183	742	0,01132	34421	1265	0,01726	28864	1061
20	290	23	334	0,03543	21197	779	0,0106	36453	1339	0,01645	30299	1113
21	305	24,1	350	0,03381	22210	816	0,00995	38515	1415	0,0156	31849	1170
22	319	25,2	365	0,03233	23224	853	0,00944	40434	1486	0,01485	33380	1227
23	334	26,3	381	0,03098	24238	891	0,00887	42613	1566	0,0142	34873	1281
24	348	27,4	397	0,02974	25251	928	0,00847	44510	1635	0,01355	36438	1339
25	363	28,5	413	0,02859	26265	965	0,00795	46856	1722	0,01299	37955	1395
26	377	29,6	429	0,02753	27279	1002	0,00758	48903	1797	0,01239	39606	1455
27	392	30,7	445	0,02654	28293	1040	0,00722	51030	1875	0,01185	41244	1515
28	406	31,8	461	0,02562	29307	1077	0,00687	53243	1956	0,01145	42703	1569
29	421	32,9	477	0,02477	30321	1114	0,00653	55548	2041	0,01093	44457	1634
30	435	34	493	0,02396	31334	1151	0,00621	57906	2128	0,01059	45914	1687
31	450	35,1	509	0,02321	32348	1189	0,00589	60412	2220	0,01015	47651	1751
32	464	36,2	525	0,02251	33361	1226	0,00558	63033	2316	0,00978	49299	1811
33	479	37,3	541	0,02184	34375	1263	0,0053	65651	2412	0,00948	50828	1868
34	493	38,4	557	0,02122	35389	1300	0,00508	68040	2500	0,0091	52637	1934
35	508	39,5	573	0,02063	36403	1338	0,00478	71140	2614	0,00875	54443	2000
36	522	40,6	589	0,02007	37416	1375	0,00455	73924	2716	0,00847	56101	2061
37	537	41,7	605	0,01954	38430	1412	0,0043	77066	2832	0,0082	57784	2123
38	551	42,8	621	0,01904	39444	1449	0,00409	80055	2942	0,00794	59492	2186
39	566	43,9	637	0,01856	40458	1487	0,00385	83566	3071	0,00768	61263	2251
40	580	45	653	0,01811	41472	1524	0,00362	87253	3206	0,00743	63061	2317

Bild 8: Leistung – POV 2150

$$q_{m} \, = \, 0.2883 \, \times \, C \, \times \, A_{0} \, \times \, K_{dr} \, \times \, K_{b} \, \times \! \sqrt{\frac{P}{V}}$$

- $\mathbf{P}_{\mathsf{set}}$ Eingestellter Ansprechdruck in bar(g)
- **P** Ansprechdruck in bar(g)
- **C** Abblasefunktion
- v Spezifisches Dampfvolumen unter Ansprechdruck des Ventils p in (m³/kg)
- $\mathbf{q}_{\mathbf{m}}$ Überströmleistung in kg/h
- **K**_b Korrekturfaktor bei unterkritischem Durchfluss
- **d** Durchflussquerschnitt Sitz mm²
- **A_o** Durchflussbereich Sitz in mm²
- $\mathbf{K}_{\mathbf{dr}}$ Herabgesetzter Entladekoeffizient bei definierter Hubhöhe

P,	set	ı	P	R22	q _n	n	R404a	q _n		R717	q	l _m
bar(g)	psig	bar(g)	psig	v	kg/h	lb/min	v	kg/h	lb/min	v	kg/h	lb/min
10	145	12	174	0,01974	39440	1449	0,01629	42561	1564	0,10753	17564	645
11	160	13,1	190	0,01797	43190	1587	0,0147	46812	1720	0,09867	19157	704
12	174	14,2	206	0,01638	47098	1731	0,01346	50934	1871	0,0913	20735	762
13	189	15,3	222	0,01514	50851	1868	0,01233	55239	2030	0,08461	22358	821
14	203	16,4	238	0,014	54749	2012	0,01128	59793	2197	0,079	23955	880
15	218	17,5	254	0,01311	58444	2147	0,01048	64080	2355	0,07383	25597	941
16	232	18,6	270	0,01229	62230	2287	0,00973	68562	2519	0,06998	27106	996
17	247	19,7	286	0,01152	66149	2431	0,00902	73285	2693	0,06636	28646	1053
18	261	20,8	302	0,0108	70200	2579	0,00842	77940	2864	0,06213	30421	1118
19	276	21,9	318	0,01012	74413	2734	0,00786	82774	3041	0,05898	32038	1177
20	290	23	334	0,00961	78257	2875	0,00738	87543	3217	0,0562	33635	1236
21	305	24,1	350	0,00908	82411	3028	0,00688	92811	3410	0,0535	35287	1297
22	319	25,2	365	0,00861	86540	3180	0,00645	98018	3602	0,05121	36882	1355
23	334	26,3	381	0,0081	91150	3349	0,00606	103306	3796	0,049	38518	1415
24	348	27,4	397	0,00768	95546	3511	0,00565	109203	4013	0,04687	40199	1477
25	363	28,5	413	0,00738	99406	3653	0,0053	114992	4225	0,04514	41776	1535
26	377	29,6	429	0,00699	104094	3825	0,00496	121141	4451	0,04348	43380	1594
27	392	30,7	445	0,0067	108281	3979	0,00463	127692	4692	0,0415	45220	1662
28	406	31,8	461	0,00634	113289	4163	0,00429	135011	4961	0,0401	46820	1720
29	421	32,9	477	0,00607	117767	4327	0,00401	142040	5219	0,0387	48477	1781
30	435	34	493	0,00579	122580	4504	0,00371	150120	5516	0,0373	50197	1844
31	450	35,1	509	0,00552	127557	4687	0,00339	159565	5863	0,03612	51829	1904
32	464	36,2	525	0,00523	133083	4890	0,003	172258	6329	0,03482	53608	1970
33	479	37,3	541	0,00499	138300	5082	0,00206	211011	7753	0,0337	55313	2032
34	493	38,4	557	0,00475	143826	5285				0,03276	56922	2092
35	508	39,5	573	0,00452	149537	5495				0,03158	58801	2161
36	522	40,6	589	0,00428	155797	5725				0,03083	60334	2217
37	537	41,7	605	0,00408	161717	5942				0,02972	62278	2288
38	551	42,8	621	0,00389	167790	6165				0,02901	63861	2346
39	566	43,9	637	0,00365	175430	6446				0,02815	65657	2412
40	580	45	653	0,00345	182690	6713				0,0274	67378	2476

Tabelle 12: Leistung – POV 2150 (Fortsetzung)

	set			Luft (20 °C)	q	m		R410a	q _n		R744 (CO ₂)	q	n
bar(g)	psig	bar(g)	psig	v	kg/h	lb/min	П	V	kg/h	lb/min	V	kg/h	lb/min
10	145	12	174	0,0679	22605	831		0,02213	37249	1369	0,03196	32094	1179
11	160	13,1	190	0,0622	24677	907		0,02022	40716	1496	0,0293	35022	1287
12	174	14,2	206	0,05738	26750	983		0,01848	44342	1629	0,0269	38055	1398
13	189	15,3	222	0,05325	28822	1059		0,0169	48131	1768	0,02514	40861	1501
14	203	16,4	238	0,04968	30894	1135		0,01569	51717	1900	0,02352	43737	1607
15	218	17,5	254	0,04656	32966	1211		0,01457	55438	2037	0,02201	46704	1716
16	232	18,6	270	0,04381	35038	1287		0,01353	59310	2179	0,02061	49757	1828
17	247	19,7	286	0,04136	37110	1364		0,01275	62878	2310	0,01932	52890	1943
18	261	20,8	302	0,03917	39183	1440		0,01201	66570	2446	0,01825	55917	2055
19	276	21,9	318	0,03721	41254	1516		0,01132	70359	2585	0,01726	58999	2168
20	290	23	334	0,03543	43327	1592		0,0106	74513	2738	0,01645	61933	2276
21	305	24,1	350	0,03381	45399	1668		0,00995	78726	2893	0,0156	65101	2392
22	319	25,2	365	0,03233	47471	1744		0,00944	82648	3037	0,01485	68230	2507
23	334	26,3	381	0,03098	49543	1820		0,00887	87103	3201	0,0142	71281	2619
24	348	27,4	397	0,02974	51615	1897		0,00847	90981	3343	0,01355	74481	2737
25	363	28,5	413	0,02859	53687	1973		0,00795	95776	3519	0,01299	77582	2851
26	377	29,6	429	0,02753	55760	2049		0,00758	99961	3673	0,01239	80956	2975
27	392	30,7	445	0,02654	57832	2125		0,00722	104308	3833	0,01185	84305	3098
28	406	31,8	461	0,02562	59904	2201		0,00687	108831	3999	0,01145	87287	3207
29	421	32,9	477	0,02477	61977	2277		0,00653	113543	4172	0,01093	90872	3339
30	435	34	493	0,02396	64048	2353		0,00621	118362	4349	0,01059	93850	3448
31	450	35,1	509	0,02321	66121	2430		0,00589	123485	4537	0,01015	97401	3579
32	464	36,2	525	0,02251	68192	2506		0,00558	128842	4734	0,00978	100769	3703
33	479	37,3	541	0,02184	70265	2582		0,0053	134195	4931	0,00948	103894	3817
34	493	38,4	557	0,02122	72337	2658		0,00508	139076	5110	0,0091	107593	3953
35	508	39,5	573	0,02063	74410	2734		0,00478	145413	5343	0,00875	111285	4089
36	522	40,6	589	0,02007	76480	2810		0,00455	151104	5552	0,00847	114673	4214
37	537	41,7	605	0,01954	78554	2886		0,0043	157526	5788	0,0082	118114	4340
38	551	42,8	621	0,01904	80625	2962		0,00409	163636	6013	0,00794	121605	4468
39	566	43,9	637	0,01856	82697	3039		0,00385	170813	6276	0,00768	125225	4601
40	580	45	653	0,01811	84770	3115		0,00362	178349	6553	0,00743	128900	4736

Abmessungen und Gewichte

Tabelle 13: Abmessungen

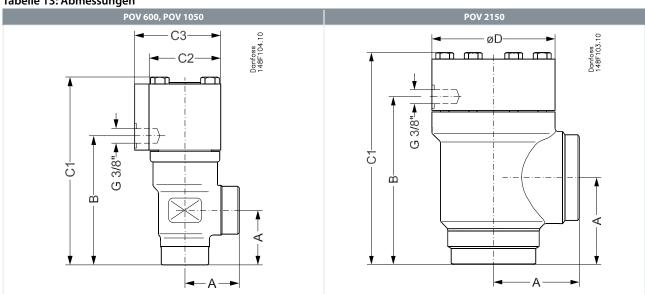


Tabelle 14: Abmessungen und Gewicht

Ventil	größe	A	В	C ₁	C ₂	C ₃	ØD	Gewicht
POV 600 11/2 Zoll	mm	55	130	188	73	88		5 kg
FOV 000 1 1/2 ZOII	in	2,2	5,1	7,4	2,8	3,5		11,0 lb
POV 1050 2	mm	70	137	184	90	105		6 kg
½ Zoll	in	2,8	5,4	7,2	3,5	4,1		13,2 lb
POV 2150 3 Zoll	mm	90	174	219			130	11 kg
POV 2130 3 2011	in	3,5	6,9	8,6			5,1	24,2 lb

Die angegebenen Gewichte sind ca. Werte.

Bestellung

Tabelle 15: Bestellung

Тур	Bestellnr.
POV 600 ANSCHWEISSENDE DIN DN 40	2417+232
POV 600 ANSCHWEISSENDE ANSI DN 40	2417+047
POV 1050 ANSCHWEISSENDE DIN DN 65	148F3026
POV 1050 ANSCHWEISSENDE ANSI DN 65	148F3027
POV 2150 ANSCHWEISSENDE DIN DN 80	148F3033
POV 2150 ANSCHWEISSENDE ANSI DN 80	148F3034

Nippel und Dichtungen

Achtung: Fittings für Anschlüsse müssen separat bestellt werden

Tabelle 16: Abmessungen und Gewicht

Größe		Тур	Bestellnr.	
mm	Zoll	Für System POV + BSV	-	
15	1/2	Satz Fittings	148H3453	

• WICHTIG:

Falls Produkte gemäß den Vorschriften bestimmter Zulassungsbehörden zertifiziert sein müssen oder höheren Drücke ausgesetzt werden, müssen der Bestellung entsprechende Angaben beigefügt werden.

Werkstoffspezifikation

Tabelle 17: Werkstoffspezifikation

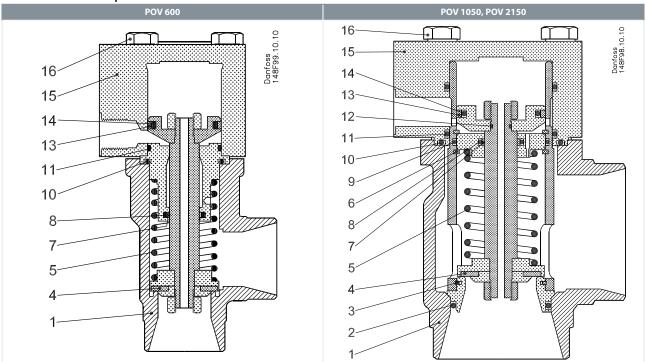


Tabelle 18: Werkstoffspezifikation

Nein	Teil	Material	EN	ISO	ASTM
1	Gehäuse	Stahl	P285QH		LF2, A350
2	O-Ring	Chloropren (Neopren)	EN 10222-4		
3	Federring	Stahl			
4	Teflon-Unterlegscheibe	PTFE (Teflon)			
5	Feder	Stahl			
6	Seeger	Stahl			
7	Gleitring	PTFE (Teflon)			

Verdichterüberströmventil, Typ POV

Nein	Teil	Material	EN	ISO	ASTM
iveiii	Tell	Material	EIN	130	ASTIVI
8 - 12	O-Ring	Chloropren (Neopren)			
13	Gleitring	PTFE (Teflon)			
14	O-Ring	Chloropren (Neopren)			
15	Kopfdeckel	Stahl			Sorte A, A662
16	Bolzen	Edelstahl	P275NL1	A2-70	Sorte B8

Zertifikate, Erklärungen und Zulassungen

Die Liste enthält alle Zertifikate, Erklärungen und Zulassungen für diesen Produkttyp. Einzelne Kodenummern können einige oder alle dieser Zulassungen enthalten, und bestimmte lokale Zulassungen erscheinen möglicherweise nicht auf der Liste.

Einige Genehmigungen können sich im Laufe der Zeit ändern. Sie können den aktuellen Status unter danfoss.de einsehen oder sich bei Fragen an Ihren Danfoss-Vertreter vor Ort wenden.

Tabelle 19: Gültige Zulassungen

Dateiname	Dokumenttyp	Thema des Dokuments	Zulassungsbehörde
EAC RU Д-DK.БЛ08.В.03706	EAC-Erklärung	Maschinen und Ausrüstungen	EAC
TÜV 0045 202 1204 Z 00354 19 D 001(00)	Druck – Sicherheitszertifikat		ΤÜV
GMPI TSX71002520151142	Herstellungserlaubnis		GMPI
EAC RU C-DK.БЛ08.В.01096_20	Druck – Sicherheitszertifikat	PED	EAC
MD 033F0691.AE	Herstellererklärung	RoHS	Danfoss
033F0473.AD	Herstellererklärung	ATEX	Danfoss

Druckgeräterichtlinie (DGRL)

Druckgeräterichtlinie (DGRL)

Die Ventile POV sind gemäß den europäischen Vorgaben, die in der Druckgeräterichtlinie spezifiziert sind, zugelassen und verfügen über eine CE-Kennzeichnung. Für weitere Informationen / Einschränkungen siehe die Installationsanleitung.

Tabelle 20: Druckgeräterichtlinie (DGRL)

Ventile POV				
CE	Nennweite	DN 40 mm (1½ Zoll) DN 40 mm (1½ Z		
	Klassifiziert für	Fluidgruppe I		
	Kategorie	I	II	

Online support

Danfoss bietet neben unseren Produkten ein breites Spektrum an Support, einschließlich digitaler Produktinformationen, Software, mobiler Apps und fachkundiger Beratung. Siehe die folgenden Möglichkeiten.

Der Danfoss Product Store

Der Danfoss Product Store ist Ihr One-Stop-Shop für alles, was mit dem Produkt zu tun hat – egal, wo auf der Welt Sie sich befinden oder in welchem Bereich der Kühlbranche Sie tätig sind. Erhalten Sie schnellen Zugriff auf wichtige Informationen wie Produktspezifikationen, Bestellnummern, technische Dokumentation, Zertifizierungen, Zubehör und mehr. Auf store.danfoss.de stöbern.

Technische Dokumentation finden

Finden Sie die technische Dokumentation, die Sie für die Inbetriebnahme Ihres Projekts benötigen. Erhalten Sie direkten Zugriff auf unsere offizielle Sammlung von Datenblättern, Zertifikaten und Erklärungen, Handbüchern und Anleitungen, 3D-Modellen und Zeichnungen, Fallbeispielen, Broschüren und vielem mehr.

Suchen Sie jetzt unter www.danfoss.com/de-de/service-and-support/documentation.

Danfoss Learning

Danfoss Learning ist eine kostenlose Online-Lernplattform. Sie enthält Kurse und Materialien, die speziell entwickelt wurden, um Ingenieuren, Installateuren, Servicetechnikern und Großhändlern zu helfen, die Produkte, Anwendungen, Branchenthemen und Trends besser zu verstehen, die Ihnen helfen werden, Ihre Arbeit zu erledigen.

Erstellen Sie Ihr kostenloses Danfoss Learning-Konto unter www.danfoss.com/de-de/service-and-support/learning.

Erhalten Sie lokale Informationen und Support

Lokale Danfoss-Websites sind die Hauptquelle für Hilfe und Informationen über unser Unternehmen und unsere Produkte. Erhalten Sie Infos zur Produktverfügbarkeit, die neuesten regionalen Nachrichten oder kontaktieren Sie einen Experten in Ihrer Sprache.

Hier finden Sie Ihre Danfoss-Website vor Ort: www.danfoss.com/en/choose-region.

Ersatzteile

Greifen Sie direkt von Ihrem Smartphone auf den Ersatzteil- und Servicesatz-Katalog von Danfoss zu. Die App enthält eine große Auswahl an Komponenten für Klimatechnik- und Kühlungsanwendungen, wie Ventile, Schmutzfänger, Druckschalter und Sensoren. Laden Sie die Ersatzteil-App kostenlos herunter unter www.danfoss.com/en/service-and-support/

downloads.

Coolselector® 2 – Finden Sie die besten Komponenten für Ihr HVAC/R-System

Coolselector®2 erleichtert Ingenieuren, Beratern und Designern die Suche und Bestellung der besten Komponenten für Kälte- und Klimaanlagen. Dazu müssen Sie lediglich Berechnungen auf Grundlage Ihrer Betriebsbedingungen ausführen und anschließend die beste Komponentenzusammenstellung für Ihre Anlage auswählen.

Laden Sie Coolselector®2 kostenlos unter Coolselector.Danfoss.de herunter.

Danfoss GmbH

Climate Solutions • danfoss.de • +49 69 8088 5400 • cs@danfoss.de

Alle Informationen, einschließlich, aber nicht beschränkt auf Informationen zur Auswahl von Produkten, ihrer Anwendung bzw. ihrem Einsatz, zur Produktgestaltung, zum Gewicht, den Abmessungen, der Kapazität oder zu allen anderen technischen Daten von Produkten in Produktandbüchern, Katalogbeschreibungen, Werbungen usw., die schriftlich, mündlich, elektronisch, online oder via Download erteilt werden, sind als rein informativ zu betrachten, und sind nur dann und in dem Ausmaß verbindlich, als auf diese in einem Kostenvoranschlag oder in einer Auftragsbestätigung explizit Bezug genommen wird. Danfoss übernimmt keine Verantwortung für mögliche Fehler in Katalogen, Broschüren, Videos und anderen Druckssachen. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung Änderungen an seinen Produkten vorzunehmen. Dies gilt auch für bereits in Auftrag genommene, aber nicht gelieferte Produkte, sofern solche Anpassungen ohne substanzielle Änderungen der Form, Tauglichkeit oder Funktion des Produkts möglich sind.
Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum von Danfoss A/S oder Danfoss-Gruppenunternehmen. Danfoss und das Danfoss Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.