Gestion d'Energie Analyseurs de Puissance Type WM14-96 "Profibus DP"

- Indice de protection (face avant): IP65
- Dimensions de la face avant: 96x96mm

- Classe 1 (énergie active)
- Classe 2 (énergie réactive)
- Précision ±0.5 P.E. (courant/tension)
- Analyseur de puissance
- Affichage des variables instantanées: 3x3 digit
- Affichage des énergies: 8+1 digit
- Mesures des variables système et phase: W, W_{dmd}, var, VA, VA_{dmd}, PF, V, A, An, A_{dmd}, Hz
- Indicateur Amax, Admd max, Wdmd max
- Mesures des énergies: kWh et kvarh
- Compteur d'heures (5+2 DGT)
- Mesures de la valeur efficace vraie des formes d'onde distordues (courants/tensions)
- Entrées de mesure optionnelles isolées galvaniquement
- Sortie série Profibus DP-V0
- Alarmes (visuelles uniquement) V_{LN}, An
- Alimentation: 90 à 260VCA/CC

Description du Produit

Analyseur de puissance triphasée avec clavier de programmation intégré. Particulièrement recommandé pour l'affichage des principales variables électriques. Boîtier pour montage en tableau, indice de protection de la face avant: IP 65 et sortie série Profibus DP.

Référence WM14-96 AV5 3 H DG Modèle Gammes de mesure Réseau Alimentation Option

Tableau de Sélection

Gamı	mes de mesure	Rése	eaux	Alim	entation	Optio	ons
AV5: AV6:	380/660V _{L-L} /5(6)ACA VL-N: 185 V à 460 V VL-L: 320 V à 800 V 120/208V _{L-L} /5(6)ACA VL-N: 45 V à 145 V VL-L: 78 V à 250 V nt de phase: 0,03A à 6A	3:	Système 1-2-3-phases charge équilibré / déséquilibrée, avec ou sans neutre	H:	90 à 260VCA/CC	DG:	Profibus DP + entrées de mesure isolées galvaniquement.

Caractéristiques d'entrée

Courant de neutre: 0,09 à 6A

Futuá o a manainale a		Function additionable	
Entrées nominales	2	Erreurs additionnelles	<0.00/ DE CO0/ } 000/ LID
Courant	3	Humidité	≤0,3% PE, 60% à 90% HR
Tension	4	Dérive de température	≤200ppm/°C
Précision (afficheur, RS485)	avec TC=1 et TT=1 AV5:	Taux d'échantillonage	1400 échantillonnage/s @ 50Hz
(@25°C ±5°C, H.R. ≤60%)	1150W-VA-var, PE: 230VLN,		1700 échantillonnage/s @ 60Hz
	400VLL; AV6: 285W-VA-var, PE: 57VLN, 100VLL	Temps de rafraîchissement	700ms
Courant	0,25 à 6A: ±(0,5% PE+1DGT)	Afficheur	
	0,03A à 0,25A: ±(0,5% PE+7DGT)	Type	LED, 14mm
Courant de neutre	0,25 à 6A: ±(1,5% PE +1DGT)	Lecture de variables instant.	3x3 DGT
	0,09A à 0,25A: ±(0,5% PE+7DGT)	Lecture des énergies	3+3+3 DGT (indicat. max.:
Tension phase-phase	±(1,5% PE +1 DGT)		999 999 99.9)
Tension phase-neutre	±(0,5% PE + 1 DGT)	Lecture compteur d'heures	1+3+3 DGT (indicat. max.:
Puissance active et apparente	0,25 à 6A: ±(1% PE +1DGT);		9 999 9.99)
	0,03A à 0,25A: ±(1% PE	Mesures	Courant, tension, puissance,
	+5DGT)		facteur de puissance,
Puissance réactive	0,25 à 6A: ±(2% PE+1DGT);		fréquence, énergie, mesure de valeur
	0,03A à 0.25A: ±(2% PE+5DGT)		efficace vraie de formes
Energie active	Classe 1 (démarrage "l": 30mA)		d'onde distordues
Energie réactive	Classe 2 (démarrage "l": 30mA)	Type de couplage	Direct
Fréquence	±0,1Hz (48 à 62Hz)	Facteur de crête	< 3, max 10A crête

Caractéristiques d'entrée (cont.)

Impédance d'entrée 380/660V _{L-L} (AV5) 120/208V _{L-L} (AV6) Courant	$\begin{array}{l} 1 \ M\Omega \pm 1\% \\ 1 \ M\Omega \pm 1\% \\ \leq 0,02\Omega \end{array}$	Protection contre les surcharges Tension/courant continués Pour 500ms: tension/courant	1,2 PE 2 Un/36A
Fréquence	48 à 62 Hz		

Caractéristiques de sortie sérielle Profibus DP

Profibus Type	DP-V0	Protocole Data	Profibus DP-V0
Raccordement	activer seulement pour la lecture des données longueur maxi (1200m @ 9,6kbit/s, 100m @ 6Mbit/s)	Dynamique (lecture seulement) Vitesse de transmission	variables réseau, phase et énergie Jusqu'à 6Mbit/s (dépendant
Addresses	suivant IEC61158, connecteur 9-pôles et 10 bornes 1 à 125, sélectionnable par clavier		de la longueur des cables et du nombre d'appareils sur le réseau).

Fonctions Logiciels

Mot de passe 1ère niveau 2ème niveau	Code numérique de max 3 chiffres; 2 niveaux de protection des données de programmation Mot de passe "0", aucune protection Mot de passe de 1 à 999, tous les données sont protégées.		Page 3: A L1, A L2, A L3 Page 4: A L1 dmd, A L2 dmd,
Sélection du réseau	3 phases avec ou sans neutre, déséquilibrée 3 phases, équilibrée 3 phases ARON, déséquilibrée 2 phases 1 phase		Page 12: W dmd max (*) Page 13: Wh (*) Page 14: varh (*) Page 15: VL-L Σ, PF Σ, VLN Alarm Page 16: A max (*) Page 17: A dmd max (*)
Ratio du transformateur Transformateur courant Transformateur tension	1 à 999 1,0 à 99,9		Page 18: heures de travail (*) (*) = Ces données sont stockés en EEPROM quand l'appareil est étendu.
Filtre Gamme de fonctionnement Coefficient de filtrage Action du filtre	de 0 à 100% de la gamme électrique d'entrée 1 à 16 Mesures, alarmes, sortie série (variables fondamentales	Alarmes	Programmable, pour le VLN et An (courant de neutre). Remarque: l'alarme est seulement visuel, par LED sur la face avant de l'appareil
Affichage Système triphasé avec neutre	Å, W et leurs dérivées). Jusqu'à 3 variables d'entrée Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31	Réinitialiser	Alarme indépendant (VLN∑, An) max: A dmd, W dmd, toutes les énergies (Wh, varh) et compteur d'heures

Caractéristiques alimentation électrique

Alimentation auxiliaire	90 à 260 VCA/CC	Puissance consommée	CA: 4,5 VA CC: 4W

Caractéristiques générales

Température de fonctionnement Température de stockage	0 à +50°C (32 à 122°F) (HR < 90% pas de condensation) -10 à +60°C (14 à 140°F) (HR < 90% pas de condensation)	CEM (cont.) Immunité Tension d'impulsion (1.2/50μs)	EN61000-6-2 (classe A) environnement industriel EN61000-4-5
Catégorie d'installation	Cat. III (IEC 60664, EN60664)	Normes de sécurité	IEC60664, EN60664
Isolation (pendant 1 minute)	4000VCA entre	Homologations	CE
	entrées de mesure et alimentation.	Raccordements 5(6) A Sect. max. du fil	A vis 2,5 mm²
	2000VCA entre entrées de mesure et	Boîtier	
	sortie série. 2000VCA entre alimentation et	Dimensions (WxHxD) Matériau	96 x 96 x 63 mm ABS auto-extincteur: UL 94 V-0
	sortie série.	Montage	Tableau
Résistance diélectrique	4000 VCA (pendant 1 minute)	Degré de Protection	Face avant: IP65 (standard)
CEM			Connexions: IP20
Emissions	EN50084-1 (classe A) environnement résidentiel commerce et petite industrie	Poids	400 g environ (emballage inclus)

Pages affichées

Affichage des variables dans les systèmes triphasés avec neutre

No	1 ^{ère} variable	2 ^{ème} variable	3 ^{ème} variable	Remarques
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Point décimal clignotant à la droite de l'afficheur
3	A L1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demande (temps d'intégration sélectionnable de 1 à 30 minutes)
5	An	AL.n		AL.n si l'alarme courant neutral est active
6	W L1	W L2	W L3	Point décimal clignotant à la droite de l'afficheur si les W sont générés
7	PF L1	PF L2	PF L3	(PF = facteur de puissance)
8	var L1	var L2	var L3	Point décimal clignotant à la droite de l'afficheur si les W sont générés
9	VA L1	VA L2	VA L3	
10	VA réseau	W réseau	var réseau	
11	VA dmd (réseau)	W dmd (réseau)	Hz (réseau)	dmd = demande (temps d'integration sélectionnable de 1 à 30 minutes)
12		W dmd MAX		Demande de puissance de réseau max.
13	Wh (MSD)	Wh	Wh (LSD)	La valeur totale est affichée in 3 groupes de 3 chiffres max.
14	varh (MSD)	varh	varh (LSD)	La valeur totale est affichée in 3 groupes de 3 chiffres max.
15	V LL réseau	AL.U	PF réseau	AL.U= est activé seulement si une des 3 phases VLN n'est pas dans les limites programmés
16	A MAX			courant max entre les 3 phases
17	A dmd max			courant max dmd entre les 3 phases
18	h			compteur horaire

MSD: digit plus significatif (Most Significant Digit) LSD: Digit moins significatif (Least Significant Digit)

Pages affichées (cont.)

1) Exemple d'affichage kWh:

Dans cet exemple la valeur 15 933 453.7 kWh est affichée.

2) Exemple d'affichage kvarh:

10...100%

0...90%

Dans cet exemple la valeur 3 553 944.9 kvarh est affichée.

Forme des signaux qui peuvent être mesurés

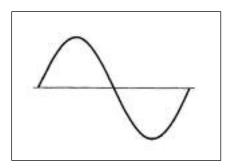


Figure A
Onde sinusoïdale, non distordue
Contenu en fondamentales 100%
Contenu en harmoniques 0%

 $A_{rms} = 1.1107 | \overline{A} |$

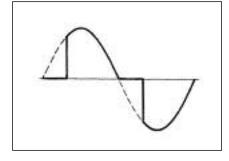


Figure B
Onde sinusoïdale, droite
Contenu en fondamentales
Contenu en harmoniques
Spectre de fréquence:
3ème au 16ème harmonique
Erreur additionnelle: <1% PE

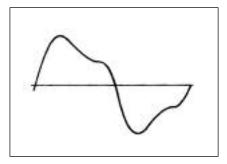
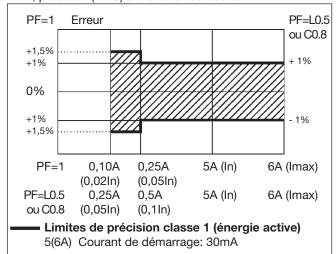


Figure C
Onde sinusoïdale, distordue
Contenu en fondamentales 70...90%
Contenu en harmoniques 10...30%
Spectre de fréquence: 3ème au
16ème harmonique
Erreur additionnelle: <0,5% PE

Isolation entre entrées et sorties


	Entrées de mesure V	Entrées de mesure A	Port Profibus	Alimentation
Entrées de mesure V	-	-	2kV	4kV
Entrées de mesure A	-	-	2kV	4kV
Port Profibus	2kV	2kV	-	2kV
Alimentation	4kV	4kV	2kV	-

Remarque: en cas de dérangement de la prémière isolation, le courant dès entrées de mesure vers la terrre est inférieure à 2mA.

Précision

kWh, précision (RDG) en fonction du courant

PF = facteur de puissance

kvarh, précision (RDG) en fonction du courant Erreur +2.5% +2% 0% +2% +2,5% sinφ=1 0,1A 0,25A 5A (In) 6A (Imax) (0,05ln)(0,02ln)0,25A 0,5A 5A (In) 6A (Imax) $\sin \varphi = 0.5$

Limites de précision classe 2 (énergie réactive) 5(6A) Courant de démarrage: 30mA

(0,1ln)

(0,05ln)

Formules de calcule utilisées

Variables de phase

Tension effective instantanée

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Puissance active instantanée

$$W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Facteur de puissance instantané

$$\cos \varphi_1 = \frac{W_1}{VA}$$

Courant effectif instantané

 $kWhi = \int_{t_1}^{t_2} Pi(t)dt \cong \Delta t \sum_{n=1}^{n} Pnj$

 $k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t)dt \cong \Delta t \sum_{t_1=1}^{n_2} Qnj$

$$A_{1} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_{1})_{i}^{2}}$$

Puissance apparent instantanée

$$VA_1 = V_{1N} \cdot A_1$$

Puissance réactive instantanée

$$var_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

Variables réseau

Tension équivalente triphasée

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$$

Puissance réactive triphasée

$$var_{\Sigma} = (var_1 + var_2 + var_3)$$

Puissance active triphasée

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Puissance apparent triphasée

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \text{var}_{\Sigma}^2}$$

Facteur de puissance triphasé

$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$

Courant neutral

$$An = \overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$$

Compteur d'énergie

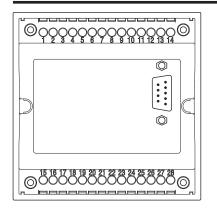
Où:

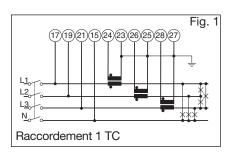
i = phase considerée (L1, L2 ou L3)

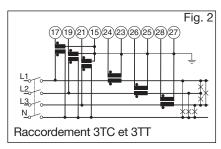
P = puissance active

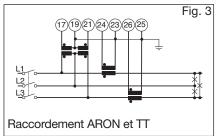
Q = puissance réactive

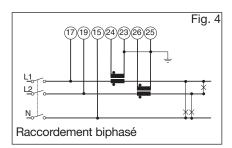
 t_1 , t_2 = points de l'heure de départ et de fin de l'enregistrement des consommations

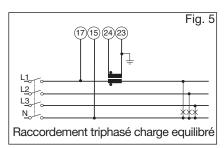

n = unité temps

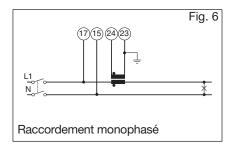

Δt= intervalle de temps entre deux consommations d'électricité successives

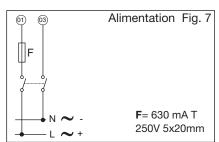

 n_1 , n_2 = première et dernière unité temps dans la période de l'enregistrement des consommations

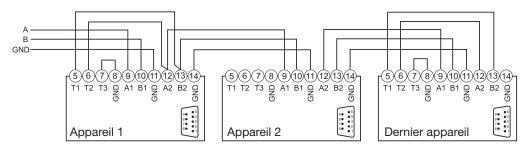

CARLO GAVAZZI

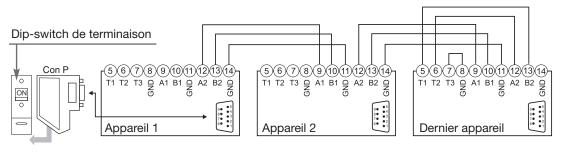

Schémas de câblage







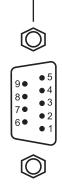




NOTE: Le raccordement directe n'est pas autorisé

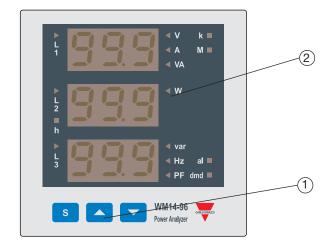
Schémas de câblage Port Profibus

Effectuer la terminaison du premier WM14 et du dernier WM14 au moyen des connecteurs à vis T1, T2, T3 comme expliqué ci-dessus. Utiliser un câble faradisé à 2 conducteurs. Pour la longeur du câble (entre le premier et le dernier appareil) se référer au tableau "TAB1".



Effectuer la terminaison du premier WM14 en plaçant le Dip-switch dans la position ON sur le connecteur "Con P" et le dernier WM14 en raccordant T1, T2, T3. Utiliser un câble faradisé à 2 conducteurs. Pour la longueur du câble entre le premier et le dernier appareil se référer au tableau "TAB1".

Schémas de câblage Port Profibus (cont.)


Tableau 1				
Kbit/s	m			
9.6 / 19.2 / 45.45 / 93.75	≤1 200			
187.5	≤1 000			
500	≤400			
1 500	≤200			
3 000 / 6 000	≤100			

Pin no.	Signal	Signification	Remarque
1	Shield	Protection CEM	Pas raccordé
2	M24	Terre de P24	Pas raccordé
3	1B (*)	Réception des données / Transmission des données (+)	RxD/TxD-P
4	CNTR-P (RTS)	Signal de contrôle du sens de communication	
5	GND (*)	Terre de Vp	DGND
6	VP (*)	+ 5V	
7	P24	+ 24V	Pas raccordé
8	1A (*)	Réception des données / Transmission des données (-)	RxD/TxD-N
9	CNTR-N	Signal de contrôle du sens de communication	Pas raccordé

(*) Les signaux obbligatoires doivent être rendu disponibles par l'utilisateur.

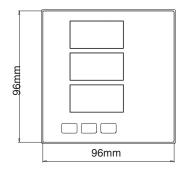
Description de la Face Avant

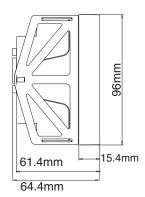
1. Clavier

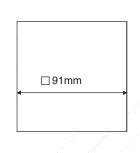
Le clavier permet de programmer les paramètres de configuration et l'affichage des variables.

Touche de saisie des paramètres de programmation et de confirmation des sélections;

Touche de:


- programmation des valeurs;
- choix des fonctions;
- d'affichage des pages de mesures.


2. Afficheur


Afficheur à LED des indications alphanumériques suivantes:

- affichage des paramètres de configuration;
- affichage des pages de mesure.

Dimensions et découpe du Panneau

