

## Product Description

Dupline receiver ${ }^{\oplus}$ designed to be a part of the Dupline ${ }^{\circledR}$ concept for Building Auto-
mation. SPST relay outputs for control of 4 loads of up to 250 VAC/16 A.

## Type Selection

| Supply | Ordering no. |
| :--- | :--- |
| 24 VAC | G3430 4445024 |
| 115 VAC | G3430 4445 115 |
| 230 VAC | G34304445 230 |

## Output Specifications

| Outputs | 4 SPST relays |
| :--- | :--- |
| Contact ratings (AgSn02) | $\mu$ (micro gap) |
| Resistive loads $\quad$ AC1 | $16 \mathrm{~A} / 250 \mathrm{VAC}$ |
| Mechanical lifetime | $5 \times 10^{6}$ operations |
| Electrical lifetime | $1 \times 10^{5}$ operations $/ 250 \mathrm{~V}, 12 \mathrm{~A}$ |
| Minimum load | $100 \mathrm{~mA} / 12 \mathrm{~V}$ |
| Operating frequency | 60 operations $/ \mathrm{min}$. |
| Dielectric voltage |  |
| Outputs - Dupline <br> Output - Output | $\geq 4 \mathrm{kVAC}(\mathrm{rms})$ |
| Response time | $>4 \mathrm{kVAC}(\mathrm{rms})$ |
|  | $\leq 1$ pulse train |

## Supply Specifications

Power Supply
Rated operational voltage
Through term. 21 \& 22

Frequency
Rated operational power Max. power dissipation

Overvoltage cat. III (IEC 60664)
230 VAC, $+/-10 \%$ (IEC 60038) 115 VAC, +/- 10\% (IEC 60038) 24 VAC, +/- 10\%
45 to 65 Hz
Typ. 2,5 VA
7 W
-4-channel receiver

- Relay load: 16 A
- Module load: 64 A (16 A per relay)
- Galvanically separated SPST relay outputs
- H4-housing
- For mounting on DIN-rail (EN 50022)
- LED-indications for supply, Dupline ${ }^{\oplus}$ carrier and outputs
- AC power supply
- Address coding by GAP 1605
- The relay outputs can be connected to different phases


## Ordering Key

## 34304445024

Type: Dupline ${ }^{\circledR}$
H4-housing
Receiver
Number of channels
Output type
Power supply


Supply Specifications (cont.)

| Power supply (cont.) |  |  |
| :--- | :--- | :--- |
| Rated impulse withstand volt. |  |  |
|  | 230 | 4 kV |
|  | 115 | $2,5 \mathrm{kV}$ |
|  | 024 | 800 V |
|  |  |  |
| Dielectric voltage |  | $\geq 4 \mathrm{kVAC}$ (rms) |
| Supply - Dupline |  |  |
| Supply - Outputs |  | $\geq 2 \mathrm{kVAC}$ (rms) |

## General Specifications

| Fail polarity state delay Upon loss of Dupline ${ }^{\oplus}$ carrier | $\leq 20 \mathrm{~ms}$ |
| :---: | :---: |
| Power ON delay | typ. 2s |
| Indication for: |  |
| Supply ON | LED, Green |
| Dupline ${ }^{\text {® }}$ carrier | LED, Yellow |
| Output ON | LED, red (one per output) |
| Environment |  |
| Degree of protection | IP 20 |
| Pollution degree | 3 (IEC 60664) |
| Operating temperature | -5 to $+50^{\circ} \mathrm{C}\left(+23^{\circ}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ |
| Storage temperature | -50 to $+85^{\circ} \mathrm{C}\left(-58^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ |
| Humidity (non-condensing) | 20 to 80\% |
| Mechanical resistance |  |
| Shock | 5 G (11ms) |
| Vibration | 2 G (6 to 55 Hz ) |
| Housing | H4-housing |
| Weight | 400 g |

## Operation Diagram

Power supply

Output 2 (term. 27 \& 28)

## Mode of Operation

4-channel receiver with 4 normally open contact outputs. Each output is individually coded by means of the code programmer GAP 1605. For changing the default setting, please refer to the datasheet on GAP 1605.

The outputs are normally OFF. When a transmitter coded to the selected channel is activated, the output turns ON and remains ON until the respective channel becomes deactivated. The default set-
ting is such that upon loss of Dupline ${ }^{\circledR}$ carrier all the outputs go OFF.

Note: At delivery some of the relays might be ON due to transportation bumps. To be sure that the relays are OFF, connect the module to power and Dupline and transmit on channels A1-4 once.

Note: Due to the construction with bistable relays, the module is intended for heating and light control only.

## Wiring Diagram

4 channels G 34304445 ...
SPST relay output


Default setting (fail polarity): OFF

## Accessories

DIN-rail
FMD 411

Dimensions (mm)


| Load | Test conditions | Typical number of operations |
| :---: | :---: | :---: |
| $250 \mathrm{~V}, 12 \mathrm{~A}, \cos \varphi=1$ | 1800/h, 50\% DC, +70 ${ }^{\circ} \mathrm{C}$ | $1.0 \times 10^{5}$ |
| $250 \mathrm{~V}, 8 \mathrm{~A}, \cos \varphi=1$ | 1800/h, 50\% DC, $+70^{\circ} \mathrm{C}$ | $3.5 \times 10^{5}$ |
| $250 \mathrm{~V}, 4 \mathrm{~A}, \cos \varphi=1$ | 1800/h, 50\% DC, $+70^{\circ} \mathrm{C}$ | $5.0 \times 10^{5}$ |
| $250 \mathrm{~V}, 3 \mathrm{~A}, \cos \varphi=1$ | 1800/h, 50\% DC, $+70^{\circ} \mathrm{C}$ | $7.5 \times 10^{5}$ |
| $230 \mathrm{~V}, 550 \mathrm{~W}$ <br> filament lamps $\begin{aligned} & \mathrm{l}_{\text {in }} \leq 40 \mathrm{~A}_{\text {peak }} \\ & \mathrm{I}_{\text {off }}=2.5 \mathrm{~A} \end{aligned}$ | 60/h, $8 \%$ DC, $+22^{\circ} \mathrm{C}$ | $2.0 \times 10^{5}$ |
| $230 \mathrm{~V}, 1000 \mathrm{~W}$ <br> filament lamps $\begin{aligned} & \mathrm{I}_{\text {in }} \leq 71.5 \mathrm{~A}_{\text {peak }} \\ & \mathrm{I}_{\text {off }}=4.5 \mathrm{~A} \end{aligned}$ | 60/h, $8 \%$ DC, $+25^{\circ} \mathrm{C}$ | $7.0 \times 10^{4}$ |
| $230 \mathrm{~V}, 900 \mathrm{~W}$ <br> fluorescent tubes $(25 \times 36 \mathrm{~W})$ <br> parallel compensated, $30 \mu \mathrm{~F}$ | 360/h, 50\% DC, $+25^{\circ} \mathrm{C}$ | $1.0 \times 10^{4}$ |
| $\begin{aligned} & \hline 230 \mathrm{~V} \text {, compressor } \\ & \mathrm{I}_{\text {in }} \leq 21 \mathrm{~A}_{\text {peak }} \\ & \mathrm{I}_{\text {off }}=3.5 \mathrm{~A} \\ & \cos \varphi=0.5 \end{aligned}$ | 500/h, 20\% DC, +25 ${ }^{\circ} \mathrm{C}$ | $1.7 \times 10^{5}$ |
| $250 \mathrm{~V}, 8 \mathrm{~A}, \cos \varphi=0.3$ | 360/h, 50\% DC, $+25^{\circ} \mathrm{C}$ | $1.0 \times 10^{5}$ |

