RGS1P..AA.., RGS1P..V..

1-polige proportional schaltende Regler

Bes

Beschreibung

Der RGS1P ist ein proportionaler Thyristorsteller,mit dem die Leistung 1-phasiger Lasten über einen analogen Steuereingang gesteuert werden kann. Die Montage sollte direkt auf einem Chassis oder einem Kühlkörper erfolgen.

Die Steuereingangsversionen AA und V decken verschiedene Steuerstrom- und Steuerspannungsbereiche ab. Die Auswahl des Betriebsmodus erfolgt über einen Drehknopf auf der Front. Ausgewählt werden kann zwischen Phasen anschnittsteuerung, Vollwellensteuerung und erweiterter Vollwellensteuerung. Zusätzlich steht eine Softstartfunktion zur Begrenzung des Einschaltstromstoßes für Lasten mit hohem Temperaturkoeffizienten (z. B. Kurzwellen-Infrarotheizstrahler) zur Verfügung.

Der Ausgang des RGS1P ist durch einen integrierten Varistor zwischen den Ausgangsanschlüssen gegen Überspannung geschützt. Zwei LEDs auf der Vorderseite zeigen den aktuellen Zustand der Last und der Steuerung an.

Falls nicht anders angegeben, beziehen sich die technischen Angaben auf 25 °C Umgebungstemperatur.

Vorteile

- Erspart den Einsatz von Analog-Digital-Wandlern.
 Der Ausgang des RGS1P kann direkt über ein analoges Strom- oder Spannungssignal gesteuert werden.
- Reduzierung des Lagerbestands. Multifunktionssteuerung mit der Möglichkeit, zwischen verschiedenen Schaltmodi zu wählen.
- Geringere Instandhaltungskosten. Die Kombination von Drahtbondtechnologie und Directbonding-Verfahren sind die neuesten Technologien für die Herstellung von Leistungshalbleitern. Durch diese neuen Fertigungsverfahren erhöht sich die Lebensdauer der Halbleiterschütze, gegenüber bisherigen Produktionsmethoden, um das Zwei- bis Dreifache.
- Geringe Maschinenausfallzeiten. Der thermisch robuste Aufbau und der integrierte Überspannungsschutz verhindern eine durch kurzen Überlastungen und Transienten auf der Lastseite verursachten frühen Ausfall der Halbleiterschütze.
- Solide Anschlusstechnik. Die Lastanschlüsse der Halbleiterschütze mit einer Nennleistung von 90 A sind mit robusten Käfigklemmen ausgestattet, die Leitungen mit Querschnitten bis zu 25 mm² / AWG3 aufnehmen.
- Erfüllt die UL508A Anforderungen. Alle RGS1P sind erfüllen die Kurzschlussstromfestigkeit (SCCR) von 100 kArms.

Anwendungen

Spritzguss, PET-Streckblasformen, Thermoformen, elektrische Öfen, Schmelzofen, Klimakammern, Kanalheizung, Luftaufbereitungsanlagen.

Hauptfunktionen

- 1-polige proportionaler Thyristorsteller mit integriertem Kühlkörper
- Wählbarer Betriebsmodus: Phasenanschnittsteuerung, Vollwellensteuerung und erweiterte Vollwellensteuerung, Zusätzlich steht eine Softstartfunktion zur Verfügung
- Verfügbar bis 660 VAC und 90 AAC
- Steuereingänge: 4-20 mA or 0-5 V, 1-5 V, 0-10 V, externes Potenziometer

Bestellcode

F RGS1P □□□E□	

Fügen Sie an diesen Stellen die gewünschte Option ein . Die gültige Bestellnummer finden Sie im Abschnitt "Auswahlhilfe".

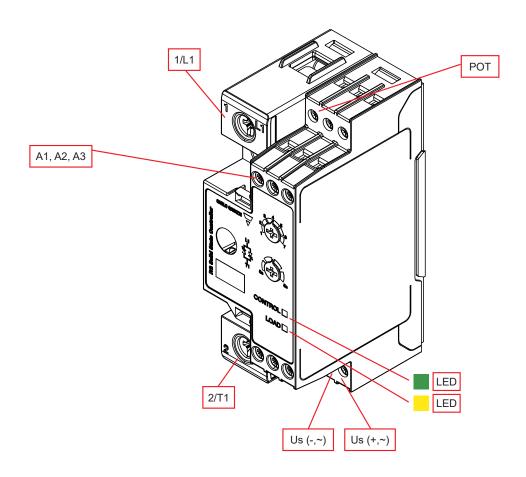
Code	Option	Beschreibung	Hinweise
R	-	H. H. '' (DO)	
G		Halbleiterrelais (RG)	
S		Version ohne Kühlkörper	
1		1-poliges Schalten	
Р		Proportionale Schaltung	
	23	Nennspannung: 85 - 265 VAC, 800 Vp	
	48	Nennspannung: 190 - 550 VAC, 1200 Vp	
	60	Nennspannung 410 - 660 VAC, 1200 Vp	
	AA	Steuerspannung: 4-20 mADC	
	V	Steuerspannung: 0-5 VDC, 1-5 VDC, 0-10 VDC, externes Potenziometer	Benötigt externe Versorgung (Us)
	50	Nennstrom: 50 AAC (1800 A ² s)	Max. Strom mit geeignetem Kühlkörper.
	92	Nennstrom: 90 AAC (18000 A ² s)	Siehe Strombelastbarkeit.
E		Schützkonfiguration	
	D	Externe Stromversorgung (Us): 24 VDC/AC	
	A	Externe Stromversorgung (Us): 90 - 250 VAC	

Typenwahl

Nennbetrieb-		Externe		Maximaler Nennbetriebsstrom (I²t)		
sspannung, Ue	Steuereingang	Stromversorgung, Us	Lastanschlüsse	50 AAC (1800 A²s)	90 AAC (18000 A²s)	
	A A - 4 20 A D C		Schraube	RGS1P23AA50E	-	
	AA : 4-20 mADC	-	Käfig	-	RGS1P23AA92E	
85 - 265 VAC		24 VDC/AC	Schraube	RGS1P23V50ED	-	
05 - 265 VAC	V : 0-10 V, 0-5 V,	Z4 VDC/AC	Käfig	-	RGS1P23V92ED	
	1-5 VDC, pot	90-250 VAC	Schraube	RGS1P23V50EA	-	
		90-250 VAC	Käfig	-	RGS1P23V92EA	
	AA : 4-20 mADC	-	Schraube	RGS1P48AA50E	-	
			Käfig	-	RGS1P48AA92E	
190 - 550 VAC	V: 0-10 V, 0-5 V, 1-5 VDC, pot	24 VDC/AC	Schraube	RGS1P48V50ED	-	
190 - 550 VAC			Käfig	-	RGS1P48V92ED	
		90-250 VAC	Schraube	RGS1P48V50EA	-	
			Käfig	-	RGS1P48V92EA	
	AA : 4-20 mADC		Schraube	RGS1P60AA50E	-	
	AA: 4-20 MADC	-	Käfig	-	RGS1P60AA92E	
440 660 1/60		24 VDC/AC	Schraube	RGS1P60V50ED	-	
410 - 660 VAC	V : 0-10 V, 0-5 V,		Käfig	-	RGS1P60V92ED	
	1-5 VDC, pot	00.350.VAC	Schraube	RGS1P60V50EA	-	
		90-250 VAC	Käfig	-	RGS1P60V92EA	

Mit Carlo Gavazzi kompatible Komponenten

Zweck	Code der Komponente	Notizen
Thermal pads	RGHT	- Graphit-Wärmeleitfolie für die RG-Serie, einseitig klebend - Breite x Höhe x Dicke = 14 x 35 x 0.13 mm - Packungsinhalt 10 Stück
Thermal paste	HTS02S	- Spritze mit silikonbasierter Wärmeleitpaste - Volumen = 2 ml - Packungsinhalt 1 Stück
Schraubensätze	SRWKITM5X30MM	- Schraubensatz zur Befestigung des Halbleiterrelais am Kühlkörper - Schrauben Torx T20, M5x30 mm - Packungsinhalt 20 Stück
Schutzhülle	RGTMP	Das Montagekit der manipulationssicheren Abdeckung beinhaltet: - 5 x transparente Abdeckung - 5 x Kabelbinder
Kühlkörper	RHS	Kühlkörper und Zubehör


Weitere Dokumente

Informationen	Wo es zu finden ist	Notizen
Datenblatt	http://cga.pub/?39eb59	Überblick über das Kühlkörper- und Zubehörsortiment
	https://gavazziautomation.com/nsc/HQ/EN/solid_state_relays	Online-Tool zur Kühlkörperauswahl

Struktur

Element	Komponente	Funktion
1/L1	Stromanschluss	Netzanschluss
2/T1	Stromanschluss	Lastanschluss
A1, A2, A3	Steueranschluss	Steuereingang
POT	Potentiometeranschluss	Externer Potentiometereingang
Us (+,~)	Externer Versorgungsanschluss	Positives Signal (RGS1PVD) oder AC-Signal (RGS1PVA)
Us (-,~)	Externer Versorgungsanschluss	Die Erde (RGS1PVD) oder AC-Signal (RGS1PVA)
Grüne LED	Steueranzeige	Zeigt an, dass Steuerspannung vorhanden
Gelbe LED	Belastungsanzeige	Zeigt an, dass Ladespannung vorhanden

Merkmale

Allgemeines

Material		PA66 oder PA6 (UL94 V0), RAL7035 Glühdrahtzündtemperatur, Glühdrahtentflammbarkeitsindex entspricht EN 60335-1 Anforderungen			
Montage		DIN-Schiene (direkte Montage auch mögl	DIN-Schiene (direkte Montage auch möglich)		
Berührungsschutz		IP20			
Überspannungskateg	jorie	III, 6 kV (1.2/50 μs) Nenn-Stoßspannungs	festigkeit		
		4000 Vrms (L1, T1, A1, A2, A3, POT, GND,	Us gegen Gehäuse)		
Isolierung		2500 Vrms (L1, T1 zu A1, A2, A3, POT, GND, Us)			
		1500 Vrms (Us zu A1, A2, A3, POT, GND) gilt nur für RGS1PVEA			
LED-Statusanzeige¹	RGS1PAA Steuereingang: <4 mA, blinken 0.5 s ON, 0.5 s OFF >4 mA, Intensität schwankt je nach Ein-		RGS1PV Steuereingang: <0 V, blinken 0.5 s ON, 0.5 s OFF >0 V, vollständig ON Stromversorgung ON (Us): Blinken 0.5 s ON, 0.5 s OFF		
	Gelb	Last ON			
Gewicht		RGS1P50: ungefähr. 180 g RGS1P92: ungefähr. 190 g			

^{1.} Siehe Abschnitt LED-Anzeigen

Leistung

Ausgangsspezifikationen

	RGS1P50	RGS1P92
Nennbetriebsstrom ² : AC-51	50 AAC	90 AAC
Nennbetriebsstrom: AC-55b ³	50 AAC	90 AAC
Betriebsfrequenzbereich	45 to	65 Hz
Überspannungsschutz im Lastkreis	Integrate	d varistor
Leckstrom im Sperrzustand bei Nennspannung	<5 m	AAC
Minimaler Laststrom	250 mAAC	500 mAAC
Periodischer Überlaststrom UL508: Ta=40°C, t_{ON} =1 s, t_{OFF} =9 s, 50 Zyklen, PF = 0.7	107 AAC	168 AAC
Spitzen-Stoßstrom (I _{TSM}), t=10 ms	600 Ap	1900 Ap
I²t für Sicherung (t=10 ms), minimum	1800 A²s	18000 A²s
Leistungsfaktor	>0.7 at rated voltage	
Kritische Spannungssteilheit dV/dt (@Tj init = 40°C)	1000 V/µs	

- 2. Max. Strom mit geeignetem Kühlkörper. Siehe Strombelastbarkeit.
- 3. Überlastprofil für AC-55b, le: AC-55b: 6x le 0.2: 50 x; wobei le = Nennstrom (AAC), 0,2 die Dauer der Überlastung (6 × le) in Sekunden, 50 die Einschaltdauer in % und x = Anzahl der Startvorgänge ist. RGS1P..50: AC-55b: 180 0.2: 50 15; RGS1P..92: AC-55b: 300 0.2: 50 350. Bei anderen Überstromwerten wenden Sie sich bitte an einen Vertriebspartner von Carlo Gavazzi.

Spezifikationen der Ausgangsspannung

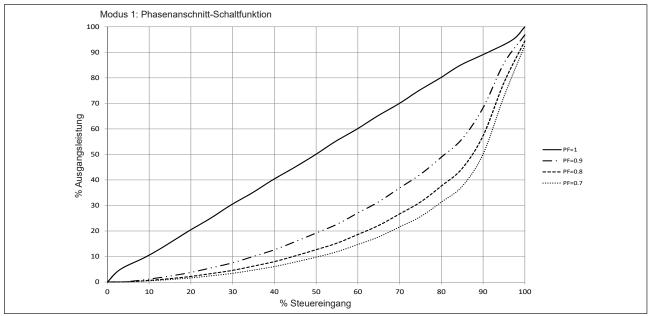
	RGS1P23	RGS1P48	RGS1P60
Betriebsspannungsbereich (Ue)	85-265 VAC	190-550 VAC	410-660 VAC
Sperrspannung	800 Vp	1200 Vp	1200 Vp

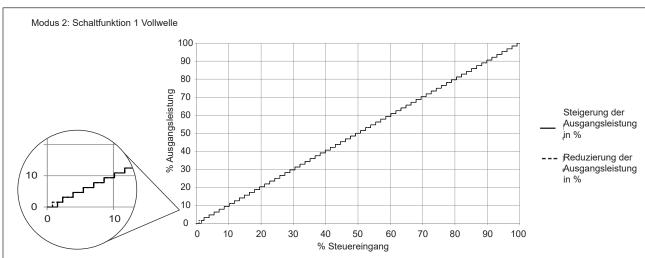
Versorgungspezifikationen

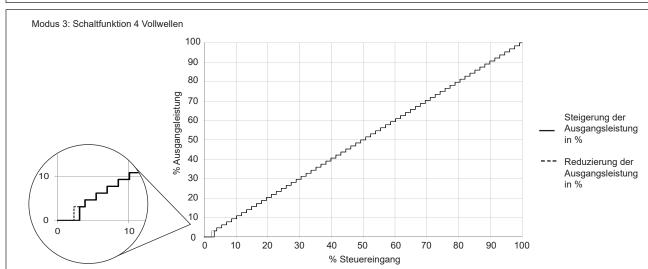
	RGS1PVD	RGS1PVA
Versorgungsspannung (Us)⁴	24 VDC, -15% / +20%	90-250 VAC
	24 VAC, -15% / +15%	-
Überspannungsschutz	Bis zu 32 VDC/AC für 30 sec.	n/a
Verpolungsschutz	Ja	n/a
Schutz gegen Spannungsspitzen⁵	Ja, integriert	Ja, integriert
Max. Versorgungsstrom	30 mA	14 mA

- 4. 24 VDC/AC von einer Stromquelle Klasse 2 bereitgestellt
- 5. Siehe Abschnitt Elektromagnetische Verträglichkeit

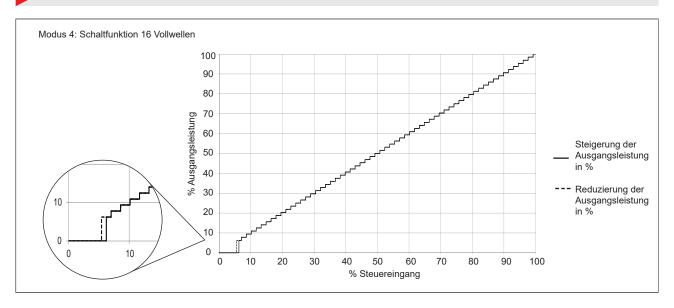
Eingangsspezifikationen

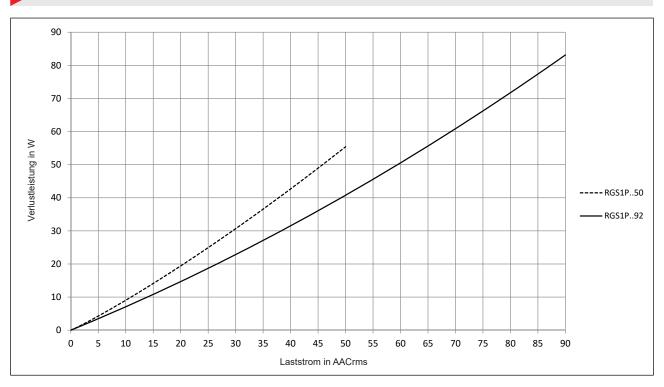

	RGS1PAA	RGS1PV	
Steuereingang	4-20 mADC (A1-A2)	0-10 VDC (A1-GND) 0-5 VDC (A2-GND) 1-5 VDC (A3-GND)	
Einschaltstrom	4.3 mADC	-	
Ausschaltstrom	3.9 mADC	-	
Einschaltspannung 0-5 VDC, 0-10 VDC 1-5 VDC	- -	0.5 VDC 1.5 VDC	
Ausschaltspannung 0-5 VDC, 0-10 VDC 1-5 VDC	-	0.05 VDC 1.02 VDC	
Potenziometereingang	- 10 kΩ (GND - A2 - PC		
Maximale Initialisierungszeit	280 ms 250 ms		
Reaktionszeit (Eingang zu Ausgang) Modi 1, 5, 7 Modi 2, 3, 4, 6		owellen owellen	
Spannungsabfall	<10 VDC @ 20 mA	n/a	
Eingangsimpedanz	n/a	100 kΩ	
Linearität (Ausgangsauflösung)	Siehe Abschnitt Übert	ragungseigenschaften ⁷	
Verpolungsschutz	Ja		
Maximal zulässiger Eingangsstrom	50 mA für max. 30 sec		
Eingangsschutz gegen Spannungsspitzen ⁶	Ja		
Überspannungsschutz	- Bis zu 30 VDC		


Carlo Gavazzi Ltd. 7 15/03/2023 RGS1P DS DEU


^{6.} Siehe Abschnitt Elektromagnetische Verträglichkeit.
7. Das RGx1P ist für den Einsatz in geschlossenen Regelkreisen vorgesehen, bei denen die Ausgangsleistung automatisch an die vom Regelkreis gelieferte Steuerspannung angepasst wird.

Übertragungseigenschaften





▶ Übertragungseigenschaften (Fortsetzung)

Verlustleitungskurve

Kühlkörperauswahl

Wärmewiderstand [°C/W] von RGS1P..50

Last-		Umge	bungste	mperat	ur [°C]	
strom [A]	20	30	40	50	60	70
50.0	1.45	1.28	1.06	0.87	0.68	0.49
45.0	1.72	1.50	1.29	1.07	0.85	0.64
40.0	2.00	1.75	1.50	1.25	1.00	0.75
35.0	2.35	2.06	1.76	1.47	1.18	0.88
30.0	2.83	2.48	2.13	1.77	1.42	1.06
25.0	3.52	3.08	2.64	2.20	1.76	1.32
20.0	4.58	4.01	3.44	2.86	2.29	1.72
15.0	6.40	5.60	4.80	4.00	3.20	2.40
10.0	10.19	8.92	7.64	6.37	5.10	3.82
5.0	-	19.51	16.72	13.94	11.15	8.36

Wärmewiderstand [°C/W] von RGS1P..92

Last-	Umgebungstemperatur [°C]					
strom [A]	20	30	40	50	60	70
90.0	0.62	0.52	0.41	0.31	0.21	0.11
81.0	0.77	0.66	0.54	0.42	0.31	0.19
72.0	0.97	0.83	0.70	0.56	0.43	0.29
63.0	1.23	1.07	0.91	0.75	0.59	0.43
54.0	1.55	1.35	1.16	0.97	0.77	0.58
45.0	1.93	1.69	1.45	1.21	0.97	0.73
36.0	2.53	2.21	1.89	1.58	1.26	0.95
27.0	3.55	3.11	2.66	2.22	1.77	1.33
18.0	5.67	4.97	4.26	3.55	2.84	2.13
9.0	12.46	10.90	9.34	7.79	6.23	4.67

Thermische Daten

	RGS1P50	RGS1P92
Max. Sperrschichttemperatur	125°C	125°C
Kühlkörpertemperatur	100°C	100°C
Wärmewiderstand Chip zu Gehäuse, R _{thjc}	<0.3°C/W	<0.20°C/W
Wärmewiderstand Gehäuse gegen Kühlkörper, R _{thcs} ⁸	<0.25°C/W	<0.25°C/W

^{8.} Werte für Wärmewiderstand Gehäuse gegen Kühlblech gelten bei Auftrag eines dünnen Silikonfilms in Form von Wärmepaste HTS02S von Electrolube zwischen SSR und Kühlblech.

Kompatibilität und Konformität

Zulassungen	(€ ₹1)		
Normen	LVD: EN 60947-4-3 EMCD: EN 60947-4-3 EE: EN 60947-4-3 EMC: EN 60947-4-3 CURus: UL508 Recognized (E172877), NMFT2, NMFT8 CSA: C22.2 No. 14 (204075)		
Kurzschlussstromfestigkeit	100k Arms (siehe Abschnitt Kurzschlussstrom, Typ 1 - UL508)		

Carlo Gavazzi Ltd. 10 15/03/2023 RGS1P DS DEU

Elektromagnetische Verträglichkeit (EMV) - Störfestigkeit					
Störanfälligkeit gegen die Entladung statischer Elektrizität	EN/IEC 61000-4-2 8 kV Luftentladung, 4 kV Kontakt (PC2)				
Störfestigkeit gegen hochfrequente elektromagnet. Felde	EN/IEC 61000-4-3 10 V/m, von 80 MHz bis 1 GHz (PC1) 10 V/m, von 1.4 bis 2 GHz (PC1) 3 V/m, von 2 bis 2.7 GHz (PC1)				
Störfestigkeit gegen schnelle transiente elektrische Störgrößen Electrical fast transient (burst)	EN/IEC 61000-4-4 Ausgang: 2 kV, 5 kHz (PC1)				
RGS1PAA A1, A2	2 kV, 5 kHz (PC1)				
RGS1PV A1, A2, A3, POT, GND Us	1 kV, 5 kHz (PC1) 2 kV, 5 kHz (PC1)				
Leitungsgebundene Funkfrequenzen	EN/IEC 61000-4-6 10 V/m, von 0.15 bis 80 MHz (PC1)				
Elektrische Überspannung	EN/IEC 61000-4-5 Ausgang, Leitung auf Leitung: 1 kV (PC2) Ausgang, Leitung auf Erde: 2 kV (PC2)				
RGS1PAA A1, A2	Leitung auf Leitung, 500 V (PC2) Leitung auf Erde, 500 V (PC2)				
RGS1PV A1, A2, A3, POT, GND RGS1PVED	Leitung auf Leitung, 1 kV (PC2)				
Us +, Us -	Leitung auf Leitung, 500 V (PC2) Leitung auf Erde, 500 V (PC2)				
RGS1PVEA Us ~	Leitung auf Leitung, 1 kV (PC2) Leitung auf Erde, 2 kV (PC2)				
Störfestigkeit gegen Spannungseinbrüche	EN/IEC 61000-4-11 0% für 0.5, 1 Zyklus (PC2) 40% für 10 Zyklen (PC2) 70% für 25 Zyklen (PC2) 80% für 250 Zyklen (PC2)				
Störfestigkeit gegen Kurzzeitunterbrechung	EN/IEC 61000-4-11 0% für 5000 ms (PC2)				
Elektromagnetische Verträglichkeit (EM	/IV) - Störaussendung				
ISM-Geräte-Funkstöreigenschaften; Gr zwerte und Messwerte (leitungsgeführ					
ISM-Geräte-Funkstöreigenschaften; Grenzwerte und Messverfahren	EN/IEC 55011 Class A: von 0.15 bis 30 MHz				

· Die Steuereingangsleitungen müssen zusammen installiert werden, um die Störfestigkeit des Produkts gegen Funkstörungen aufrechtzuerhalten.

(ausgestrahlt)

• Der Einsatz von Thyristorstellern kann je nach Anwendung und Laststrom leitungsgebundene Funkstörungen hervorrufen. Unter Umständen müssen daher Netzfilter eingesetzt werden, wenn der Anwender EMV-Vorschriften einhalten muss. Die in den Tabellen zur Filterspezifikation angegebenen Kapazitätswerte dienen nur zur Orientierung. Die Filterdämpfung richtet sich nach der letztendlichen Anwendung.

(Externer Filter kann erforderlich sein - siehe Abschnitt Filterung)

- · Die Überspannungstests für die Modelle RGS..A wurden mit dem Signalleitungs-Impedanznetzwerk ausgeführt. Bei einer Leitungsimpedanz von weniger als 40 Ω wird empfohlen, die AC-Stromversorgung über einen Sekundärkreis bereitzustellen, bei dem die Kurzschlussbegrenzung zwischen den Leitern und der Erde 1.500 VA oder weniger beträgt.
- · Bei einer Abweichung um einen Schritt in den verteilten Ganzzyklusmodellen und einer Skalenendabweichung um 1,5 % in Phasenwinkelmodellen gelten die PC1-Kriterien
- · Leistungskriterium 1 (PC1): Es darf kein Leistungsabfall oder Funktionsverlust auftreten, wenn das Produkt wie vorgesehen betrieben wird.
- · Leistungskriterium 2 (PC2): Während des Tests darf ein Leistungsabfall oder ein partieller Funktionsverlust auftreten. Wenn der Test abgeschlossen ist, muss das Produkt selbständig zum Normalbetrieb zurückkehren.
- Leistungskriterium 3 (PC3): Zeitweilige Funktionsverluste sind zulässig, wenn die Funktion durch manuelle Betätigung der Steuerelemente wiederhergestellt werden kann.

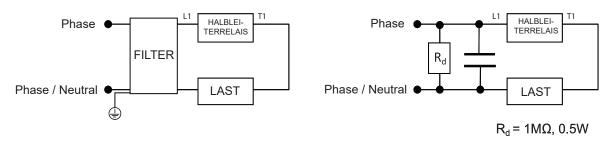
Carlo Gavazzi Ltd. 11 15/03/2023 RGS1P DS DEU

Filterung – EN/IEC 55011-Konformität

Entspricht Störaussendungsgrenzwerten der Klasse A

	RGS1P50 RGS		P92	
Max. Laststrom	30 AAC	43 AAC	60 AAC	
	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-45-33		
Modus 1 - Phasenanschnitt	EPCOS, SIFI -H-G136	A50R000 EPCOS, A42R12 SIFI-H-G136 (bis zu 36 AAC)	SCHAFFNER, FN2410-60-34	
Modus 2 - 1x Vollwelle	2.2uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	
Modus 3 - 4x Vollwelle	1uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	
Modus 4 - 16x Vollwelle	680nF, max. 760 VAC / X1	1uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	
Mades E. Esselfants Valles II.	2.2.5	0.0 5 700 / 40 / 74	SCHAFFNER, FN2410-60-34	
Modus 5 - Erweiterte Vollwelle	3.3uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	EPCOS, A60R000	
Modus 6 - Softstart + Modus 4	680nF, max. 760 VAC / X1	1uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	
Madua 7 Caffetant I Madua 5	2.2	2.05 700 \/A 0 / \/A	SCHAFFNER, FN2410-60-34	
Modus 7 - Softstart + Modus 5	3.3uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	EPCOS, A60R000	

Entspricht Störaussendungsgrenzwerten der Klasse B


	RGS1P50	RGS1	P92	
Max. Laststrom	30 AAC	43 AAC	60 AAC	
Modus 1 - Phasenanschnitt	EPCOS, A42R1122	EPCOS, A55R122	EPCOS, A75R122	
	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-60-34	
		ROXBURGH, MDF50		
Modus 2 - 1x Vollwelle	EPCOS, SIFI-H-G136	A50R000 EPCOS, A42R12 SIFI-H-G136 (bis zu 36 AAC)	EPCOS, A60R000	
Modus 3 - 4x Vollwelle	3.3uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	SCHAFFNER, FN2410-60-34	
wiodus 3 - 4x voliwelle	3.3ur, max. 700 VAC / XT	3.3ur, max. 700 VAC / X1	EPCOS, A60R000	
Modus 4 - 16x Vollwelle	2.2uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	
	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-60-34	
		ROXBURGH, MDF50		
Modus 5 - Erweiterte Vollwelle	EPCOS, SIFI-H-G136	A50R000 EPCOS, A42R12 SIFI-H-G136 (bis zu 36 AAC)	EPCOS, A60R000	
Modus 6 - Softstart + Modus 4	2.2uF, max. 760 VAC / X1	2.2uF, max. 760 VAC / X1	3.3uF, max. 760 VAC / X1	
	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-45-33	SCHAFFNER, FN2410-60-34	
		ROXBURGH, MDF50		
Modus 7 - Softstart + Modus 5	EPCOS, SIFI-H-G136	A50R000 EPCOS, A42R122 SIFI-H-G136 (bis zu 36 AAC)	EPCOS, A60R000	

Hinweis: Die empfohlene Filterung wurde durch Tests mit einer typischen Anordnung und Last ermittelt. Das RGS1P.. ist für die Integration in Systeme vorgesehen, deren Umgebungsbedingungen möglicherweise von den Testbedingungen abweichen, zum Beispiel hinsichtlich Last, Kabellänge und weiteren Hilfskomponenten, welche unter Umständen im Endsystem enthalten sind. Es obliegt daher der Verantwortung des Systemintegrators, sicherzustellen, dass das System, in dem die obige Komponente eingesetzt wird, den geltenden Richtlinien und Vorschriften entspricht.

Beim Einsatz derartiger Filter müssen die hersteller-Installationsempfehlungen berücksichtigt werden.

Filteranschlussdiagramme

Umgebungsbedingungen

Betriebstemperatur	-40°C bis +80°C (-40°F bis +176°F)		
Lagertemperatur	-40°C bis +100°C (-40°F bis +212 °F)		
Relative Luftfeuchtigkeit	95% nicht kondensierend bei 40°C		
Verschmutzungsgrad	2		
Installationshöhe	0–1.000 m. Oberhalb von 1.000 m fällt die Leistung bis zu einer Maximalhöhe von 2.000 m linear um 1 % des Einschaltstroms pro 100 m ab.		
Schwingungsfestigkeit	2g / Achsen (2-100Hz, IEC 60068-2-6, EN 50155, EN 61373)		
Schockfestigkeit	15/11 g/ms (EN 50155, EN 61373)		
EU RoHS-konform	Ja		
China RoHS	25		

Die Erklärung in diesem Abschnitt ist in Übereinstimmung mit dem Standard der Volksrepublik China Electronic Industry Standard SJ/T11364-2014 erstellt: Kennzeichnung für den eingeschränkten Einsatz gefährlicher Stoffe in elektronischen und elektrischen Produkten.

		Toxic or Harardous Substances and Elements				
Name des Bauteils	Blei (Pb)	Quecksilber (Hg)	Cadmium (Cd)	Sechswertiges Chrom (Cr(VI))	Polybromierte Biphenyle (PBB)	Polybromierte Diphenylether (PBDE)
Motorschalt- gerät	х	0	0	0	0	0

O: Zeigt an, dass der genannte gefährliche Stoff, der in homogenen Materialien für diesen Teil enthalten ist, unterhalb der Grenzwertanforderung von GB/T 26572 liegt.

X: Zeigt an, dass der in einem der für diesen Teil verwendeten homogenen Materialien enthaltene gefährliche Stoff über der Grenzwertanforderung von GB/T 26572 liegt.

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014: 标注在电子电气产品中限定使用的有害物质


	有毒或有害物质与元素					
零件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(Vl))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)
功率单元	Х	0	0	0	0	0

O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。

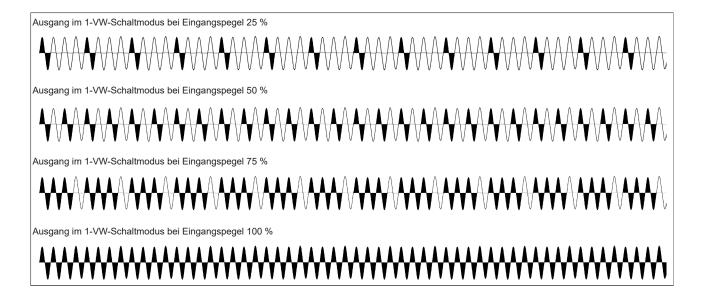
X: 此零件某种材料中含有的该有害物高于GB/T 26572的限定。



Schaltfunktionen

MODUS 1: Phasenanschnitt-Schaltfunktion

Der Phasenanschnitt-Schaltmodus arbeitet nach dem Prinzip der Phasenanschnittsteuerung. Die an die Last abgegebene Leistung wird durch Zünden der Thyristoren bei jeder Halbwelle der Netzspannung gesteuert. Der Zündwinkel hängt vom Pegel des Eingangssignals ab, das die an die Last abzugebende Ausgangsleistung bestimmt.

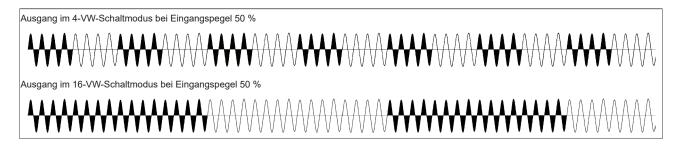


Vollwellen-Schaltfunktion

Im Vollwellen-Betriebstmodus werden nur Vollwellen geschaltet. Durch das Schalten beim Nulldurchgang werden die EMVStörspannungsemissionen im Vergleich zur Phasenanschnitt-Schaltfunktion (Modus 1) reduziert. Die Vollwellen, in denen der Ausgang eingeschaltet ist, werden über einen bestimmten Zeitraum verteilt. Im Vergleich zur Pulspaketsteuerung ermöglicht dies eine schnellere und genauere Steuerung der Last, wobei zusätzlich die Lebensdauer des Heizgeräts erhöht wird. Dieser Modus ist nur zur Verwendung mit ohmschen Lasten geeignet.

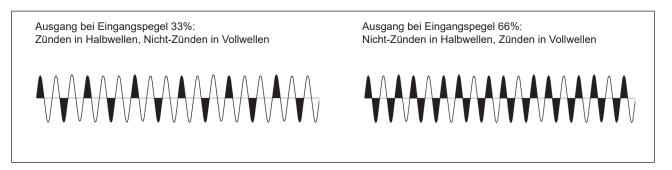
MODUS 2: Schaltfunktion 1 Vollwelle

Dieser Modus bietet die höchste Auflösung bzw. kleinste Periodendauer für die Vollwellen-Schaltfunktion, d. h. 1 Vollwelle. Bei einer gewünschten Ausgangsleistung von 50 % schaltet der Thyristorsteller die Last wiederholt für eine Vollwelle EIN und für eine Vollwelle AUS. Unterhalb einer gewünschten Ausgangsleistung von 50 % wird die Ausschaltdauer erhöht, die Einschaltdauer bleibt jedoch bei einer Vollwelle. Oberhalb einer gewünschten Ausgangsleistung von 50 % wird die Einschaltdauer erhöht, während die Ausschaltdauer bei einer Vollwelle verbleibt. Bei einer gewünschten Ausgangsleistung von 25 % verlängert sich somit die Ausschaltdauer, und der Thyristorsteller schaltet die Last wiederholt für eine Vollwelle EIN und für drei Vollwellen AUS. Bei einer gewünschten Ausgangsleistung von 75 % verlängert sich die Einschaltdauer, und der Thyristorsteller schaltet die Last wiederholt für drei Vollwellen EIN und für eine Vollwelle AUS. Bei einer gewünschten Ausgangsleistung von 100 % schaltet der Thyristorsteller die Last vollständig EIN.


Schaltfunktionen

MODUS 3: Schaltfunktion 4 Vollwellen

MODUS 4: Schaltfunktion 16 Vollwellen


Im Modus 3 beträgt die minimale Auflösung 4 Vollwellen. Bei einer gewünschten Ausgangsleistung von 50 % schaltet der Thyristorsteller die Last wiederholt für vier Vollwellen EIN und für vier Vollwellen AUS. Unterhalb einer gewünschten Ausgangsleistung von 50 % wird die Ausschaltdauer erhöht, die Einschaltdauer bleibt jedoch bei vier Vollwellen. Oberhalb einer gewünschten Ausgangsleistung von 50 % wird die Einschaltdauer erhöht, während die Ausschaltdauer bei vier Vollwellen verbleibt.

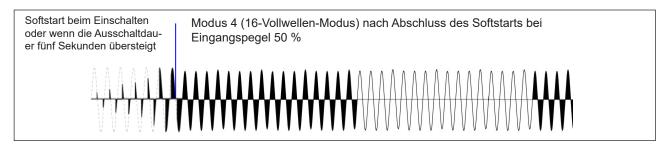
Im Modus 4 beträgt die minimale Auflösung 16 Vollwellen. Bei einer gewünschten Ausgangsleistung von 50 % schaltet der Thyristorsteller die Last wiederholt für 16 Vollwellen EIN und für 16 Vollwellen AUS. Unterhalb einer gewünschten Ausgangsleistung von 50 % wird die Ausschaltdauer erhöht, die Einschaltdauer bleibt jedoch bei 16 Vollwellen.

MODUS 5: Erweiterte Vollwellen-Schaltfunktion (AFC)

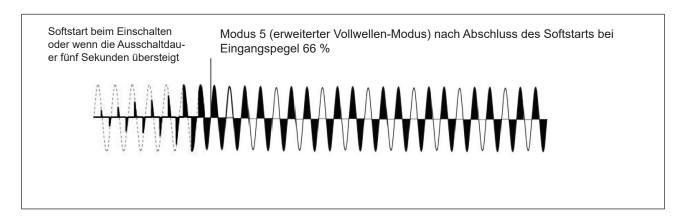
Dieser Schaltmodus basiert auf dem oben beschriebenen Prinzip verteilter Vollwellen. Im Unterschied dazu wird jedoch die Auflösung der Einund Ausschaltperiode zu einer halben Vollwelle der Netzspannung geändert. Dieser Modus ist für die Verwendung mit Kurz- und Mittelwellen-Infrarotheizstrahlern vorgesehen. Der Zweck der Beschränkung der Ausschaltdauer auf eine Halbwelle besteht darin, das unangenehme visuelle Flackern derartiger Lampenlasten zu reduzieren. Unterhalb einer gewünschten Ausgangsleistung von 50 % schaltet der Thyristorsteller die Last in Halbwellenperioden EIN. Bei den Ausschaltperioden handelt es sich dagegen um Vollwellen. Oberhalb einer gewünschten Leistung von 50 % schaltet der Thyristorsteller die Last in Vollwellen ein, während die Ausschaltperioden im Gegensatz dazu auf Halbwellen verkürzt werden.

SOFTSTART

Der Softstart wird verwendet, um den Einschaltstrom von Lasten zu begrenzen, die über ein hohes Verhältnis von "Widerstand kalt" zu "Widerstand warm" verfügen, wie beispielsweise Kurzwellen-Infrarotheizstrahler. Der Zündwinkel des Thyristors wird über einen Zeitraum von maximal fünf Sekunden (einstellbar über ein leicht zugängliches Potenziometer) allmählich erhöht, um die Spannung (und den Strom) allmählich an die Last anzulegen. Der Softstart wird beim ersten Einschalten und in Situationen ausgeführt, in denen die Ausschaltdauer fünf Sekunden übersteigt. Wenn der Softstart vor Abschluss des Startvorgangs abgebrochen wird, geht der Thyristorsteller davon aus, dass ein Start ausgeführt wurde. In diesem Fall beginnt die Ausschaltdauer unmittelbar nach dem Abbruch des Softstarts.



Schaltfunktionen


MODUS 6: Softstart + MODUS 4 (Schaltfunktion 16 Vollwellen)

Dieser Schaltmodus arbeitet nach dem Prinzip des Schaltmodus 4 (16 Vollwellen), es wird jedoch ein Softstart ausgeführt, wenn das Gerät eingeschaltet wird oder die Ausschaltdauer fünf Sekunden übersteigt. Nachdem der Softstart abgeschlossen wurde, wird die Last entsprechend dem Eingangssignal mit Vollwellen geschaltet (mit einer Auflösung von 16 Vollwellen), wie es der Schaltfunktion im Modus 4 entspricht.

MODUS 7: Softstart + MODUS 5 (erweiterte Vollwellen-Schaltfunktion)

Dieser Schaltmodus arbeitet nach dem Prinzip des erweiterten Vollwellenmodus (Modus 5), es wird jedoch ein Softstart ausgeführt, wenn das Gerät eingeschaltet wird oder die Ausschaltdauer fünf Sekunden übersteigt. Nachdem der Softstart abgeschlossen wurde, wird die Last mit einer dem Eingangssignal entsprechenden Ausgangsleistung gesteuert, wie es dem Schaltprinzip im Modus 5 entspricht.

LED-Anzeigen

RGS1P..AA..

RGS1P..V..

LED	Status	Auslösezeit-Diagramm
	Steuereingang <4 mA	
	Steuereingang >4 mA	
Steuerung (grün)	Ausfall der Netzspannung	0.5s → I
	Interner Fehler im SSR	→ ← → 3s ← 0.5s
Last (gelb)	Last ON	

LED	Status	Auslösezeit-Diagramm
	Versorgungsspannung (US) ON	
	Steuereingang >0 V	
Steuerung (grün)	Ausfall der Netzspannung	
	Interner Fehler im SSR	→ ← → 3s ← 0.5s
Last (gelb)	Last ON	

Kurzschlussschutz

Schutzkoordinierung, Typ 1 gegen Typ 2:

Typ-1 bedeutet, dass sich das zu prüfende Gerät nach einem Kurzschluss nicht länger im Funktionszustand befindet. Beim Typ 2 ist das zu prüfende Gerät nach einem Kurzschluss immer noch einsatzbereit. In beiden Fällen muss der Kurzschluss beendet sein. Die Testsicherung zwischen Gehäuse und Versorgung darf nicht ausgelöst haben. Die Tür bzw. Abdeckung des Gehäuses darf nicht aufgesprengt werden. An den Leitern oder Anschlussklemmen dürfen keine Schäden entstanden sein und die Leiter dürfen sich nicht von den Anschlussklemmen gelöst haben. Die Isolierung darf nicht so weit aufgebrochen oder gerissen sein, dass die Betriebssicherheit der Halterung von stromführenden Teilen beeinträchtigt ist. Es dürfen keine Teile weggeschleudert werden und es darf keine Brandgefahr bestehen.

Die in der nachstehenden Tabelle aufgeführten Varianten sind geeignet für den Einsatz in einem Stromkreis, der bei Schutz durch Sicherungen höchstens einen symmetrischen Strom von 100.000 A effektiv und eine Spannung von maximal 600 Volt liefern kann. Die Prüfungen bei 100.000 A wurden mit superflinken Sicherungen, Klasse J durchgeführt. Die folgende Tabelle zeigt den maximal zulässigen Nennstrom der Sicherung. Nur Schmelzsicherungen verwenden. Die Tests mit Class J Sicherungen sind repräsentativ für Class CC Sicherungen.

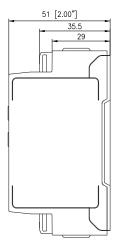
Koordinationstyp 1 gemäß UL 508					
Art. Nr. Unbeeinflusster Kurzschlussstrom [kArms] Max. Größe [A] Klasse Spannung [VAC]					
RGS1P50	100	30	J or CC	May 600	
RGS1P92	100	80	J	Max. 600	

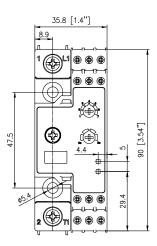
Koordinationstyp 2 (IEC/EN 60947-4-3)						
Art. Nr.	Unbeeinflusster Kurzschluss- strom [kArms]	Ferraz Shawmut (Mersen)		Siba		Max.
		Max. Größe [A]	Art. Nr.	Max. Größe [A]	Art. Nr.	Spannung [VAC]
RGS1P50	10	40	6.9xx CP GRC 22x58 /40	32	50 142 06.32	600
	100	40				
RGS1P92	10	- 125	6.621 CP URQ 27x60 /125		50 194 20.125	600
			A70QS125-4	125		
	100		6.621 CP URQ 27x60 /125			
			A70QS125-4			

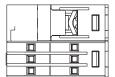
xx = 00, ohne Sicherungs-Auslöseanzeige xx = 21, mit Sicherungs-Auslöseanzeige

Koordination Typ 2 mit Sicherungsautomaten (M.C.B.s)				
Halbleiterschütz Typ	Bestellnr. ABB Z-Auslösecharakteristik (Nennstrom)	Bestellnr. ABB B-Auslösecharakteristik (Nennstrom)	Max. Kabelquerschnitt [mm²]	Min. Kabellänge [m]⁴
RGS1P50	S201 - Z10 (10A)	S201-B4 (4A)	1.0	7.6
(1800 A ² s)			1.5	11.4
			2.5	19.0
	S201 - Z16 (16A)	S201-B6 (6A)	1.0	5.2
	, ,		1.5	7.8
			2.5	13.0
			4.0	20.8
	S201 - Z20 (20A)	S201-B10 (10A)	1.5	12.6
	, ,	, ,	2.5	21.0
	S201 - Z25 (25A)	S201-B13 (13A)	2.5	25.0
	, ,	, ,	4.0	40.0
	S202 - Z25 (25A)	S202-B13 (13A)	2.5	19.0
		, ,	4.0	30.4
RGS1P92	S201-Z32 (32A)	S201-B16 (16A)	2.5	3.0
(18000 A ² s)	, ,		4.0	4.8
,			6.0	7.2
	S201-Z50 (50A)	S201-B25 (25A)	4.0	4.8
	, ,	, ,	6.0	7.2
			10.0	12.0
			16.0	19.2
	S201-Z63 (63A)	S201-B32 (32A)	6.0	7.2
	, ,	, ,	10.0	12.0
			16.0	19.2

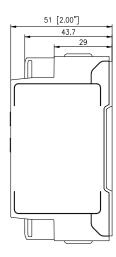
^{9.} Zwischen Sicherungsautomat und Halbleiterschütz (inklusive Rückleitung, die zurück zum Netz führt).

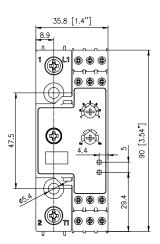

Hinweis: Die Sicherungsautomaten haben eine Funkenlöschkammer mit einem Stromwert bis 6 kA bei 230/400 V. Bei Verwendung anderer Sicherungsautomaten, sind die Vergleichswerte zu den genannten Typen sicherzustellen. Bei Abweichungen zu den aufgeführten Leitungsquerschnitten oder Leitungslängen, kontaktieren Sie Ihren zuständigen CARLO GAVAZZI Service.

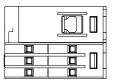

S201-Modelle beziehen sich auf 1-polige M.C.B., S202-Modelle beziehen sich auf 2-polige M.C.B.



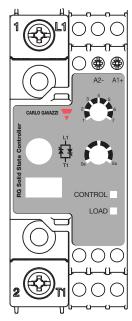
Abmessungen


RGS1P..50..





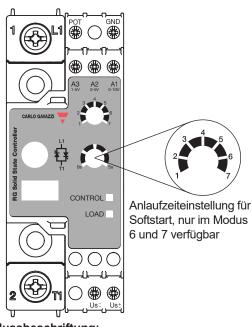
RGS1P..92..


Toleranz der Gehäusebreite +0,5 mm, -0 mm... gemäß DIN43880. Alle übrigen Toleranzen: + / - 0,5 mm. Alle Angaben in mm.

Notiz: Die angegebene Einbautiefe des RGx1P muss um 3 mm erhöht werden, wenn die manipulationssichere Abdeckung Zubehör auf dem Gerät angebracht ist.

Endgeräteschnittstelle

RGS1P..AA..



Anschlussbeschriftung:

1/L1: Netzanschluss 2/T1: Lastanschluss

A1 - A2: Steuereingang: 4 - 20 mA

RGS1P..V..

Anschlussbeschriftung:

1/L1: Netzanschluss 2/T1: Lastanschluss

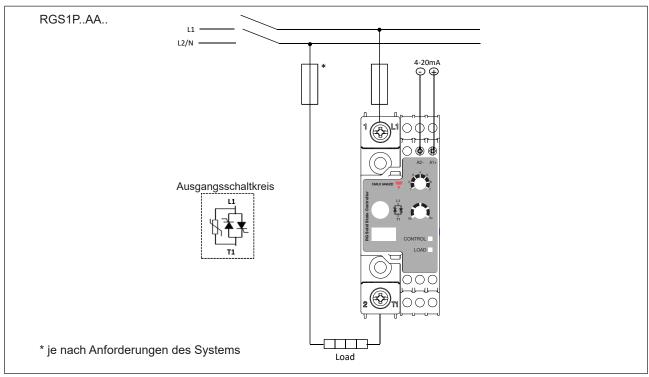
A1-GND: Steuereingang: 0-10 V A2-GND: Steuereingang: 0-5 V A3-GND: Steuereingang: 1-5 V

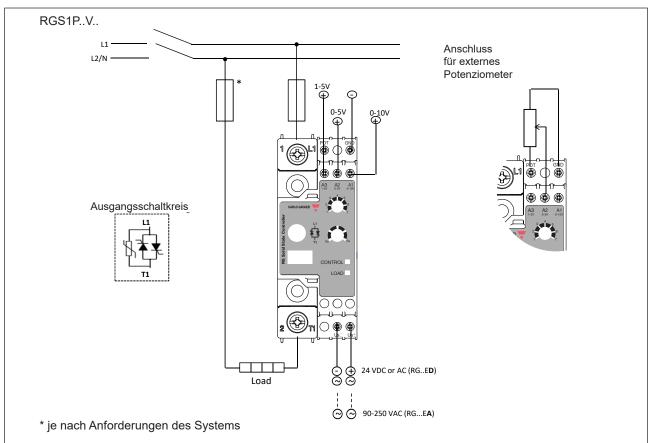
POT: Eingang für externes Potenziometer

Us (+, ~): Externe Stromversorgung, positive

DC-Versorgung (RG..V.D) oder AC-Versorgung (RG..V.A)

Us (-, ~): Externe Stromversorgung, die Erde


(RG..V..D) oder AC-Versorgung


(RG..V.A)

Modusauswahl		Schaltfunktion	
4	1	Phasenanschnitt (Standardeinstellung)	
	2	1x Vollwelle	
3 5	3	4x Vollwellen	
2 6	4	16x Vollwellen	
	5	Erweiterte Vollwelle	
1 7	6	Softstart + 16x Vollwellen	
	7	Softstart + erweiterte Vollwelle	

Anschlussbelegung

Anschluss-Spezifikationen

Lastanschlüsse				
Anschlussgerät	1/L1, 2/T1			
Leiter	Verwenden Sie 75 °C Kupferleiter (Cu)			
	RGS1P50		RGS1P92	
Anschlußtype	M4 Schraubanschlüsse mit selbstabhebende Klemmscheibe		M5 Schraubanschlüsse mit Käfigklemmen	
Abisiolierlänge	12 mm		11 mm	
Starr (massiv und mehrdrahtig) UL-/ cUL-Daten	2x 2.5 – 6.0 mm² 2x 14 – 10 AWG	1x 2.5 – 6.0 mm² 1x 14 – 10 AWG	1x 2.5 – 25.0 mm² 1x 14 – 3 AWG	
Flexibel mit Endhülse	2x 1.0 – 2.5 mm ² 2x 2.5 – 4.0 mm ² 2x 18 – 14 AWG 2x 14 – 12 AWG	1x 1.0 – 4.0 mm² 1x 18 – 12 AWG	1x 2.5 – 16.0 mm² 1x 14 – 6 AWG	
Flexibel ohne Endhülse	2x 1.0 – 2.5 mm ² 2x 2.5 – 6.0 mm ² 2x 18 – 14 AWG 2x 14 – 10 AWG	1x 1.0 – 6.0mm ² 1x 18 –10 AWG	1x 4.0 – 25.0 mm ² 1x 12 – 3 AWG	
Drehmomentangabe	Posidrive bit 2 UL: 2.0 Nm (17.7 lb-in) IEC: 1.5 – 2.0 Nm (13.3 – 17.7 lb-in)		Posidrive bit 2 UL: 2.5 Nm (22 lb-in) IEC: 2.5 – 3.0 Nm (22 – 26.6 lb-in)	
Max. Ringgabel- oder Ringösendurchmesser	12.3 mm		n/a	

Steueranschlüsse	
Anschlussgerät	GND, A1, A2, A3, POT, Us
Leiter	Verwenden Sie 60/75 °C Kupferleiter (Cu)
Anschlußtype	M3 Schraubanschlüsse mit Käfigklemmen
Abisiolierlänge	8 mm
Starr (massiv und mehrdrahtig) UL-/ cUL-Daten	1x 1.0 - 2.5 mm ² 1x 18 - 12 AWG
Flexibel mit Endhülse	1x 0.5 - 2.5 mm ² 1x 20 - 12 AWG
Drehmomentangabe	Posidrive 1 UL: 0.5 Nm (4.4 lb-in), IEC: 0.4-0.5Nm (3.5-4.4 lb-in)

COPYRIGHT ©2023 Der Inhalt kann geändert werden. PDF-Download: https://gavazziautomation.com