Automatización Eléctrica

Especialistas en Automatizacion

At the end of this document you will find links to products related to this catalog. You can go directly to our shop by clicking HERE. HERE

Distance-setting Photoelectric Sensor

E3G-L1/L3

- Reliable detection of differently colored, uneven and/or glossy objects in front of defined background (e.g. conveyors.

C

Features

1 mm dia. pin-point beam allows detection of minute objects

(E3G-L1)

OMRON's unique Hyper LED achieves a pin-point light source only $1 / 7$ the size of conventional light sources, with uniform light-intensity distribution. The Hyper LED achieves stable detection of small objects by eliminating non-detection of objects due to the drop-out which commonly occurs at the center of conventional LEDs.
The clearly visible spot makes it easy to check the optical axis adjustment and sensing position.

Stable detection is not limited to object color, but also on inclination and glossiness
(Inclination characteristic of E3G-L1 is 2.6 times better than that of conventional models.)
The use of the shining object free optical system with the conventional triangulation measuring reduces the discrepancies in sensing distance due to object color, surface, and inclination. (E3G-L3: 2.2 times better than conventional model)

A low-error distance signal is assured because an image is formed on the position sensitive detectors (PSD), irrespective of the sensing distance. Detection is also stable with respect to the inclination of the object.

Conventional Distancesetting Model

Image formation on the position sensitive detectors (PSD) is impossible at some sensing distances. The spot diameter is large, distance errors occur due to displacement of the object center of gravity, and detection is unstable with respect to inclination of the object.

Application

Meets the needs of all industries, including semiconductors, electronic components, food and packaging
Normal mode
E3G-L1 (50 mm type)
Detection of small electronic compo-
nents in a tray

Features

Simple Detection of Glossy,

 Uneven Objects

As a triangulation measuring with 4% or less differential travel (E3GL1) is used, objects behind the setting distance cannot be detected. At a setting distance of 30 mm , a step on objects with a thickness of 1.2 mm can be detected.

Optimal Background and Conveyor

 Teaching Double-bar Display Indicates
Excess Gain at a Glance

Features one-touch teaching function settings. After the object, background, and conveyor teaching are complete, fine adjustment of the sensitivity can be made in 13 levels in the Normal mode or in 5 levels in the Zone mode. It is simple to increase excess gain and set up the fine-step detection.

Glossy, uneven objects are reliably detected because the Light-OFF status occurs only when the conveyor is detected, and Dark-ON status when objects exist.
 , staus when objects exist.

Line-up of M8 Connector Type

The operation indicator turns ON when the light incident level exceeds a threshold value. Excess gain can also be checked at a glance.

Easy to disconnect and maintain.

Sensors				\square Red light \square Infrared light	
Shape	Connection method	Sensing/Setting range	Operating mode	Model	
				NPN output	PNP output
	Pre-wired		Light-ON Dark-ON (selectable)	E3G-L11	E3G-L12
	Connector type			E3G-L15	E3G-L16
	Pre-wired			E3G-L31	E3G-L32
	Connector type			E3G-L35	E3G-L36

Accessories

Mounting Brackets

Shape	Model	Quantity	Remarks
	E39-L139	1	Provided with E3G-L $\square 1 /-L \square 2$

Sensor I/O Connectors

Cable				ength	Model
Standard cable	Straight		2 m	4 conductors	XS3F-M421-402-A
			5 m		XS3F-M421-405-A
	L-shaped		2 m		XS3F-M422-402-A
			5 m		XS3F-M422-405-A

Rating/Performance

Sensor type			Distance-setting			
Item		NPN output	E3G-L11	E3G-L15	E3G-L31	E3G-L35
		PNP output	E3G-L12	E3G-L16	E3G-L32	E3G-L36
Sensing			5 to 50 mm (White paper $50 \times 50 \mathrm{~mm}$, Setting distance 50 mm)		5 to 200 mm (White paper $50 \times 50 \mathrm{~mm}$, Setting distance 200 mm) 5 to 150 mm (Black paper $50 \times 50 \mathrm{~mm}$, Setting distance 150 mm)	
Setting range			30 to 50 mm (White paper/Black paper $50 \times 50 \mathrm{~mm}$)		50 to 200 mm (White paper $50 \times 50 \mathrm{~mm}$) 50 to 150 mm (Black paper $50 \times 50 \mathrm{~mm}$)	
Differential distance			4\% max. of sensing distance		10\% of setting distance (typical)	
Reflectivity characteristics (black/white error)			4\% max. of sensing distance		10% max. of setting distance (Setting distance 50 to150 mm)	
Light source (wave length)			Red LED (650 nm)		Infrared LED (860 nm)	
Spot size			1 mm dia. max. (Sensing distance 38 mm)		15 mm dia. max. (Sensing distance 150 mm)	
Power supply voltage			10 to 30 VDC [ripple (p-p) 10\% included]			
Current consumption			55 mA max.		65 mA max.	
Control output			Load supply voltage 30 VDC max., load current 100 mA max. (residual voltage NPN type: 1.2 V max., PNP type: 2 V max.) Open collector output type (depends on the NPN/PNP output, format) Light-ON/Dark-ON switch selectable			
Protective circuits			Reverse polarity protection, output short-circuit protection, mutual interference prevention			
Response time			Operation or reset: 1.5 ms max .		Operation or reset: 2.5 ms max .	
Distance setting			Teaching method (NORMAL mode/ZONE mode)			
Fine distance adjustment			Manual threshold fine adjustment (NORMAL mode: 13 levels/ZONE mode: 5 levels)			
Indicator lamp			Operation indication (orange), distance indication (green, 8 levels), threshold indication (red, NORMAL mode: 13 levels/ZONE mode: 5 levels)			
Ambient illuminance			Incandescent lamp: 3,000 lux max. Sunlight: 10,000 lux max.			
Ambient temperature			Operating: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity			Operating: 35% to 85% RH, Storage: 35% to 95% RH (with no condensation)			
Insulation resistance			$20 \mathrm{M} \mathrm{min}$.			
Dielectric strength			$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute			
Vibration resistance			10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in X, Y, and Z directions			
Shock resistance			Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in X, Y, and Z directions			
Protective structure			IEC 60529 IP67 (with Protective Cover attached)			
Connection method			Pre-wired (standard length: 2 m)	M8 connector	Pre-wired (standard length: 2 m)	M8 connector
Weight (Packed state)			Approx. 64 g	Approx. 21 g	Approx. 64 g	Approx. 21 g
$\begin{aligned} & \text { Ma- } \\ & \text { teri- } \\ & \text { al } \end{aligned}$	Case		PBT (polybutylene terephthalate)			
	Cover		Acrylics (PMMA)			
	Mounting Brackets		Stainless steel (SUS304)			
Accessories			Mounting bracket (with screws), instruction manual			

Close-range Characteristics

E3G-L1 \square

E3G-L3 \square

Part names and functions
UP/DOWN selector
Selects the switching
direction at threshold.
Operation indicator
(Orange)
ON when output is ON.
Distance indicator (Green)
Display the relative to the
threshold.
Threshold indicator (Red)
Indicators threshold level.
SET button
For teaching or for threshold adjustment

Output Circuit Diagram

NPN output

PNP output

Connectors (Sensor I/O connectors)

Operation

Adjustment Steps

Procedure	Operation
1	Install, wire, and turn on the Sensor.
2	Perform distance setting (teaching). Refer to "Distance Setting (Teaching)".
3	Fine-adjust the threshold as necessary. Refer to "Manual Tuning (Fine Distance Adjustment)" on page A-194.
4	Check that the mode selector is set to RUN.

Distance Setting (Teaching)

Select the most appropriate teaching method in reference to the following descriptions.

| Application | $\mathbf{1}$ | 2 | |
| :--- | :--- | :--- | :--- | :--- |
| | • Teaching without sensing objects
 (i.e. Teaching the background). | - Detection of slight differences in
 surface level.
 Setting a threshold in the middle
 between the background and
 sensing object for operation. | - Detection of glossy objects in
 front of the background. |

La: Distance equivalent to threshold (a) Lb: Distance equivalent to threshold (b)

- The following settings are also possible:

Setting the maximum sensing distance of the Sensor: Maximum distance setting.
Setting the minimum differential travel of the Sensor: Minimum distance setting.

- Distance from sensor to background must be as shown below during normal one-point or zone one-point teaching.

Model	Distance from sensor to back- ground
E3G-L1 \square	32 mm min.
E3G-L3 \square	55 mm min.

- Maximum sensing distance of E3G-L3 type may differ by color of the sensing object when setting distance is more than 150 mm . Confirm the operation of the Sensor before actual operation.

1 Normal one-point teaching

$\begin{aligned} & \hline \text { Pro- } \\ & \text { ce- } \\ & \text { dure } \\ & \hline \end{aligned}$	Operation	Panel Status
1	Set the mode selector to TEACH.	
2	Set the NORMAL/ZONE mode selector to NORMAL.	
3	Press the SET button with the background. - All threshold indicators (red) are turned ON.	
4	Set the mode selector to RUN	
5	Set to L-ON or D-ON mode with the operation mode selector. L-ON: Output ON between background and sensor. D-ON: Output OFF between background and sensor.	
	Application Example 1	
1	Set the mode selector to TEACH.	
2	Set the NORMAL/ZONE mode selector to NORMAL.	
3	Set the UP/DOWN selector to down.	
4	Press the SET button for 3 s or more. - All threshold indicators (red) are turned ON.	
5	When all distance indicators (green) are then turned ON, the setting is complete. Set the mode selector to RUN.	
6	Set L-ON/D-ON with the operation mode selector. (Refer to Normal one-point teaching)	
	Application Example 2	
1	Set the mode selector to TEACH.	
2	Set the NORMAL/ZONE mode selector to NORMAL.	
3	Set the UP/DOWN selector to up.	
4	Press the SET button for 3 s or more. - All threshold indicators (red) are turned ON.	
5	When all distance indicators (green) are turned ON, the setting is complete. Set the mode selector to \square	
6	Set L-ON/D-ON with the operation mode selector. (Refer to Normal one-point teaching)	

La: Distance equivalent to threshold (a)

2 Normal two-point teaching

\begin{tabular}{|c|c|c|c|}
\hline Pro-cedure \& Operation \& \& Panel Status \\
\hline 1 \& Set the mode selector to TEACH. \& Object \& \multirow[b]{3}{*}{Threshold indicator (red) turns ON.} \\
\hline 2 \& Set the NORMAL/ZONE mode selector to NORMAL. \& \multirow[t]{3}{*}{} \& \\
\hline 3 \& \begin{tabular}{l}
Press the SET button with a sensing object located at sensing position. \\
- All threshold indicators (red) are turned ON.
\end{tabular} \& \& \\
\hline 4 \& \begin{tabular}{l}
Move the sensing object and press the SET button with the background.
\(\square\) \\
- If the teaching is successful, all distance indicators (green) are turned ON. \\
- If the teaching is not successful, all threshold indicators (red) flicker.
\end{tabular} \& \& 品逃 \\
\hline 5 \& If the teaching is successful, set the mode selector to RUN to complete the teaching operation. If the teaching is not successful, change the position of the object and setting distance that have been set and repeat from the above step 3. \& \begin{tabular}{l}
Background \\
OUT \\
NORM L

\end{tabular} \& Distance indicator (green) turns ON.

\hline 6 \& Set to L-ON or D-ON mode with the operation mode selector. \& \&

\hline
\end{tabular}

La: Distance equivalent to threshold (a)

3 Zone one-point teaching

La: Distance equivalent to threshold (a)

Manual Tuning (Fine Distance Adjustment)

Threshold and distance display method

(Display for distance setting with normal one-point or twopoint teaching)
The distance indicators show the distance level. The distance indicators show the relative distances to the threshold. The threshold can be shifted using the UP/DOWN selector and SET button. The differential travel is fixed.

(Display for distance setting with zone teaching) The distance indicators show the current distance band. The distance indicators show the relative distances to the threshold. The ON range can be shifted using the UP/DOWN selector and SET button. The differential travel is fixed.

Precautions

Correct Use

Wiring Considerations

Cable

The bending radius should be 25 mm or more.

Avoiding Malfunctions

If using the photoelectric sensor with an inverter or servomotor, be sure to ground the FG (frame ground) and G (ground) terminals, otherwise the Sensor may malfunction.

Mounting

Mounting the Sensor

- If Sensors are mounted face-to-face, ensure that no optical axes cross each other. Otherwise, mutual interference may result.
- Be sure to install the Sensor carefully so that the directional angle range of the Sensor will not be directly exposed to intensive light, such as sunlight, fluorescent light, or incandescent light.
- Do not strike the Photoelectric Sensor with a hammer or any other tool during the installation of the Sensor, or the Sensor will loose its water-resistive properties.
- Use M3 screws to mount the Sensor.
- When mounting the case, make sure that the tightening torque applied to each screw does not exceed 0.54 Nm .

M8 Connector

- Be sure to connect or disconnect the metal connector after turning OFF the Sensor.
- Hold the connector cover to connect or disconnect the metal connector.
- Secure the connector cover by hand. Do not use any pliers, otherwise the connector may be damaged.
- If the M8 connector is not connected securely, the M8 connector may be disconnected by vibration or the proper degree of protection of the Sensor may not be maintained.

Installation Directions

- Ensure that the sensing side of the Sensor is parallel to the surface of each sensing object. Do not incline the Sensor towards the sensing object.

If the sensing object has a glossy surface, incline the Sensor by 5° to 10° as shown on the right, provided that the Sensor is not influenced by any background objects.

- If there is a mirror-like object below the Sensor, the Sen-
 sor may not be in stable operation. Therefore, incline the Sensor or keep the Sensor at a certain distance from the mirror-like object as shown below.

- Ensure not to install the Sensor in the incorrect direction. Refer to the following.

Install the Sensor as shown in the following if each sensing object greatly differs in color or material.

Adjustment
If the Sensor is not in stable operation due to color differences, perform a fine adjustment of the threshold level and confirm stable detection. Refer to "Manual Teaching (Fine Distance Setting).

Maintenance and Inspection

Cleaning

Thinner or like damage the casing of the Sensor. Do not apply thinner to clean the Sensor.

Miscellaneous

EEPROM Writing Error
If a teaching data error occurs (with the operation indicator flashing) due to a power failure or static noise, perform the teaching operation of the Sensor again.

Water Resistance

To ensure the water resistivity of the Sensor, tighten the screws of the operation panel cover to a torque of 0.2 to 0.3 Nm.

Sensors

Model	A	B
E3G-L1 \square	14.5	11.88
E3G-L3 \square	16	10.35

Accessories (Order Separately)

A-215

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E900-E2-02-X In the interest of product improvement, specifications are subject to change without notice.

Below is a list of articles with direct links to our shop Electric Automation Network where you can see:

- Quote per purchase volume in real time.
- Online documentation and datasheets of all products.
- Estimated delivery time enquiry in real time.
- Logistics systems for the shipment of materials almost anywhere in the world.
- Purchasing management, order record and tracking of shipments.

To access the product, click on the green button.

| Product | Code | Reference | Product link | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Photoelectric sensor, distance setting, teach, 30-50mm, DC,
 NPN, 3-wire, M8 plug-in | 103282 | E3G-L15 | | Buy on EAN |

