Automatización Eléctrica

Especialistas en Automatizacion

At the end of this document you will find links to products related to this catalog. You can go directly to our shop by clicking HERE. HERE

Miniature Cylindrical Proximity Sensor

E2E

High performance in small sizes

- pre-wired and M8 connector models
- $3 \mathrm{~mm}, 4 \mathrm{~mm}, 5.4 \mathrm{~mm}$ and M5 sizes
- response frequency up to 3 kHz

Ordering Information

Size		Sensing Distance	Connection	Housing Material	Output	Operation mode NO	Operation mode NC
dia 3 mm	shielded	0.6 mm	pre-wired	stainless steel	PNP	E2E-CR6B1	E2E-CR6B2
					NPN	E2E-CR6C1	E2E-CR6C2
dia 4 mm		0.8 mm	pre-wired		PNP	E2E-CR8B1	E2E-CR8B2
					NPN	E2E-CR8C1	E2E-CR8C2
			M8 connector		PNP	E2E-CR8B1-M5	E2E-CR8B2-M5
					NPN	E2E-CR8C1-M5	E2E-CR8C2-M5
M5		1 mm	pre-wired	brass	PNP	E2E-X1B1	E2E-X1B2
					NPN	E2E-X1C1	E2E-X1C2
			M8 connector		PNP	E2E-X1B1-M5	E2E-X1B2-M5
					NPN	E2E-X1C1-M5	E2E-X1C2-M5
dia 5.4 mm			pre-wired		PNP	E2E-C1B1	E2E-C1B2
					NPN	E2E-C1C1	E2E-C1C2

E2E-C $\square C \square / B \square$, E2E-X1C $\square / B \square$ DC 3-wire Models

Size		3 dia.	4 dia.	M5	5.4 dia.
Type		Shielded			
Item		E2E-CR6C $\square / \mathrm{B} \square$	E2E-CR8C $\square / \mathrm{B} \square$	E2E-X1C $\square / \mathrm{B} \square$	E2E-C1C $\square / \mathrm{B} \square$
Sensing distance		$0.6 \mathrm{~mm} \pm 15 \%$	$0.8 \mathrm{~mm} \pm 15 \%$	$1 \mathrm{~mm} \pm 15 \%$	
Set distance		0 to 0.4 mm	0 to 0.5 mm	0 to 0.7 mm	
Differential travel		15\% max. of sensing distance			
Sensing object		Ferrous metal (The sensing distance decreases with non-ferrous metal, refer to Engineering Data.)			
Standard sensing object		Iron: $3 \times 3 \times 1 \mathrm{~mm}$	Iron: $5 \times 5 \times 1 \mathrm{~mm}$		
Response speed (See note.)		2 kHz	3 kHz		
Power supply voltage (operating voltage range)		12 to 24 VDC (10 to 30 VDC), ripple (p-p): 10\% max.			
Current consumption		10 mA max.	17 mA max.		
Control output	Load current	Open-collector output, 80 mA max. (at 30 VDC max.)	Open-collector output 100 mA max. (at 30 VDC max.)		
	Residual voltage	$\begin{aligned} & 1 \text { VDC max. } \\ & \text { (Load current: } 80 \mathrm{~mA} \text {, } \\ & \text { Cable length: } 2 \mathrm{~m} \text {) } \end{aligned}$	2 VDC max. (Load current: 100 mA , Cable length: 2 m)		
Indicator		Operation indicator (red LED)			
Operation mode (with sensing object approaching)		C1/-B1 Models:NO C2/-B2 Models:NC For details, refer to Timing Charts.			
Protection circuits		Power supply reverse polarity protection, surge suppressor			
Ambient temperature		Operating/Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity		Operating/Storage: 35\% to 95\%			
Temperature influence		$\pm 15 \%$ max. of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
Voltage influence		$\pm 5 \%$ max. of sensing distance in the rated voltage range $\pm 10 \%$	$\pm 2.5 \%$ max. of sensing distance in the rated voltage range $\pm 15 \%$		
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between current-carrying parts and case			
Dielectric strength		500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case			
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions			
Shock resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions			
Degree of protection		IEC 60529: IP66	IEC 60529 IP67 (Pre-wired models: JEM standard IP67g (waterproof, oilproof))		
Connection method		Pre-wired models (standard length 2 m), connector models			
Weight (packed state)	Pre-wired models	Approx. 60 g			
	Connector models	-	Approx. 12 g	Approx. 15 g	-
Material	Case	Stainless steel (SUS303)		Brass-nickel plated	
	Sensing surface	Heat-resistant ABS			
	Clamping nuts	Brass-nickel plated			
	Toothed washer	Iron-zinc plated			
Accessories		Instruction manual			

Note: The response speed is an average value. Measurement conditions are as follows: standard sensing object, a distance of twice the standard sensing object, and a set distance of half the sensing distance.

Engineering Data

Operating Range (Typical)

Shielded Models

E2E-C $\square C \square / B \square$

Sensing Distance vs. Sensing Object (Typical)

E2E-CR8 $\square \square$

Side length of sensing object d (mm)

E2E-X1 \square
E2E-C1 $\square \square$

Output Circuits and Timing Charts

Output Circuits

DC 3-wire Models

E2E-C/X $\square \mathbf{C} \square$

NPN Open-collector Output

* Pin 4 is an NO contact, and pin 2 is an NC contact.

E2E-C/X $\square \mathrm{B} \square$
PNP Open-collector Output

* Pin 4 is an NO contact, and pin 2 is an NC contact.

Timing Charts
E2E-C/X $\square C \square / B \square$
NPN/PNP Open-collector Output

Pin Arrangement
E2E-CR8C $\square / C R 8 B \square / X 1 C \square / X 1 B \square$-M5 DC 3-wire Models

Mounting
Do not tighten the nut with excessive force. A washer must be used with the nut.

Note: The table below shows the tightening torques for part A and part B nuts. In the previous examples, the nut is on the sensor head side (part B) and hence the tightening torque for part B applies. If this nut is in part A, the tightening torque for part A applies instead.

Model	Part A		Part B
	Length	Torque	Torque
M5	$1 \mathrm{~N} \cdot \mathrm{~m}$		

Refer to the following to mount the E2E-CR8 and E2E-C1 non-screw models.

M3 hole
No screw is provided with the E2E-CR8 or E2E-C1.

Tighten the screw to a torque ot $0.2 \mathrm{~N} \cdot \mathrm{~m}$ maximum to secure the E2E-CR8 and a torque of $0.4 \mathrm{~N} \cdot \mathrm{~m}$ maximum to secure the E2E-C1.

Effects of Surrounding Metal
When mounting the E2E within a metal panel, ensure that the clearances given in the following table are maintained. Failure to maintain these distances may cause deterioration in the performance of the sensor.

Model		Item	3 dia.	4 dia.	M5	5.4 dia.
$\begin{array}{\|l} \hline \mathrm{E} 2 \mathrm{E}-\mathrm{X} \square \mathrm{C} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{X} \square \mathrm{~B} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{C} \square \mathrm{C} \square \\ \mathrm{E} 2 \mathrm{E}-\mathrm{C} \square \mathrm{~B} \\ \mathrm{DC} 3 \text {-wire } \end{array}$	Shielded	I	0 mm	0 mm	0 mm	0 mm
		d	3 mm	4 mm	5 mm	5.4 mm
		D	0 mm	0 mm	0 mm	0 mm
		m	2 mm	2.4 mm	3 mm	3 mm
		n	6 mm	6 mm	8 mm	8 mm

Mutual Interference
When installing two or more Sensors face to face or side by side, ensure that the minimum distances given in the following table are maintained.

Model		Item	3 dia.	4 dia.	M5
5.4 dia.					
E2E-X $\square \mathrm{B} \square$ E2E-X $\square \mathrm{C} \square$ E2E-C $\square \mathrm{B} \square$ E2E-C $\square \mathrm{C} \square$ DC 3-wire		Shielded	A	20 mm	

Note: Values in parentheses apply to Sensors operating at different frequencies.

© WARNING

This product is not designed or rated for ensuring safety of persons.
Do not use it for such purposes.

Precautions for Safe Use

The colors in parentheses are previous wire colors.

Item	Examples
Power supply Do not impose an excessive voltage on the E2E, otherwise it may explode or burn. Do not impose 100 VAC on any E2E DC Model, otherwise it may explode or burn.	DC 3-wire Models
Load short-circuit Do not short-circuit the load, or the E2E may explode or burn. The E2E's short-circuit protection function is valid if the polarity of the supply voltage imposed is correct and within the rated voltage range.	DC 3-wire Models (NPN output)
Wiring Be sure to wire the E2E and load correctly, otherwise it may explode or burn.	DC 3-wire Models (NPN output)
Connection with no load Make sure to connect a proper load to the E2E in operation, otherwise it may explode or burn.	DC 3-wire Models

Precautions for Correct Use

Installation

Power Reset Time

The Proximity Sensor is ready to operate within 100 ms after power is supplied. If power supplies are connected to the Proximity Sensor and load respectively, be sure to supply power to the Proximity Sensor before supplying power to the load.

Power OFF

The Proximity Sensor may output a pulse signal when it is turned OFF. Therefore, it is recommended to turn OFF the load before turning OFF the Proximity Sensor.

Power Supply Transformer

When using a DC power supply, make sure that the DC power supply has an insulated transformer. Do not use a DC power supply with an auto-transformer.

Sensing Object

Metal Coating:
The sensing distances of the Proximity Sensor vary with the metal coating on sensing objects.

Wiring

High-tension Lines
Wiring through Metal Conduit
If there is a power or high-tension line near the cable of the Proximity Sensor, wire the cable through an independent metal conduit to prevent against Proximity Sensor damage or malfunctioning.

Cable Tractive Force

Do not pull on cables with tractive forces exceeding the following.

Diameter	Tractive force
4 dia. max.	30 N max.
4 dia. min.	50 N max.

Mounting

The Proximity Sensor must not be subjected to excessive shock with a hammer when it is installed, otherwise the Proximity Sensor may be damaged or lose its water-resistivity.

Environment

Water Resistivity
Do not use the Proximity Sensor underwater, outdoors, or in the rain.

Operating Environment

Be sure to use the Proximity Sensor within its operating ambient temperature range and do not use the Proximity Sensor outdoors so that its reliability and life expectancy can be maintained. Although the Proximity Sensor is water resistive, a cover to protect the Proximity

Sensor from water or water soluble machining oil is recommended so that its reliability and life expectancy can be maintained.
Do not use the Proximity Sensor in an environment with chemical gas (e.g., strong alkaline or acid gasses including nitric, chromic, and concentrated sulfuric acid gases).

Connection to a PLC

Required Conditions

Connection to a PLC is possible if the specifications of the PLC and the Proximity Sensor satisfy the following conditions. (The meanings of the symbols are given below.)

1. The ON voltage of the PLC and the residual voltage of the Proximity Sensor must satisfy the following.
$\mathrm{V}_{\mathrm{on}} \leq \mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{R}}$
2. The OFF current of the PLC and the leakage current of the Proximity Sensor must satisfy the following.
lofF \geq leak
(If the OFF current is not listed in the specifications, take it to be 1.3 mA .)
3. The ON current of the PLC and the control output (lout) of the Proximity Sensor must satisfy the following.
IOUT(min) \leq ION \leq IOUT(max)
The ON current of the PLC will vary, however, with the power supply voltage and the input impedance used as shown in the following equation.

Example

In this example, the above conditions are checked for when the PLC model is the C200H-ID212, the Proximity Sensor model is the E2E-X7D1-N, and the power supply voltage is 24 V .

1. $\operatorname{Von}(14.4 \mathrm{~V}) \leq \mathrm{Vcc}_{\mathrm{c}}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})=17.4 \mathrm{~V}$: OK
2. loff $(1.3 \mathrm{~mA}) \geq$ lieak $(0.8 \mathrm{~mA})$: OK
3. $\operatorname{lon}=\left[V_{C C}(20.4 \mathrm{~V})-\mathrm{V}_{\mathrm{R}}(3 \mathrm{~V})-\underline{\mathrm{V}_{\mathrm{PC}}(4 \mathrm{~V})}\right] / \operatorname{Rin}(3 \mathrm{k} \Omega)$
$\approx 4.5 \mathrm{~mA}$
Therefore,
lout(min) $(3 \mathrm{~mA}) \leq \operatorname{lon}(4.5 \mathrm{~mA})$: OK
Von: ON voltage of PLC (14.4 V)
Ion: ON current of PLC (typ. 7 mA)
loff: OFF current of PLC (1.3 mA)
Rin: Input impedance of PLC (3 k Ω)
VPC: Internal residual voltage of PLC (4 V)
V_{R} : Output residual voltage of Proximity Sensor (3 V)
leak: Leakage current of Proximity Sensor (0.8 mA)
lout: Control output of Proximity Sensor (3 to 100 mA)
Vcc: Power supply voltage (PLC: 20.4 to 26.4 V)
Values in parentheses are for the following PLC model and Proximity Sensor model.
PLC: C200H-ID212
Proximity Sensor: E2E-X7D1-N
Note: please refer to complete E2E/E2E2 datasheet for details on E2E-X7D1-N

Model	Connection type	Method	Description
DC 3-wire	AND (serial connection)	Correct	The Sensors connected together must satisfy the following conditions. iL + (N-1) x i \leq Upper-limit of control output of each Sensor $V_{s}-N x V_{R} \geq$ Load operating voltage N: No. of Sensors V_{R} : Residual voltage of each Sensor Vs: Supply voltage i: Current consumption of the Sensor iL: Load current If the MY Relay, which operates at 24 VDC, is used as a load for example, a maximum of two Proximity Sensors can be connected to the load.

Dimensions

Note: All units are in millimeters unless otherwise indicated.
Pre-wired Models
(Shielded)
E2E-CR6 $\square \square$

M8 (3 pin) Connector Models (Shielded)
E2E-CR8 \square-M5
E2E-X1 $\square \square-M 5$

Mounting Holes

Dimensions	3 dia.	4 dia.	M5	5.4 dia.
$F(\mathrm{~mm})$	$3.3^{+0.3}$ dia.	$4.2^{+0.5}$ dia.	$5.5^{+0.5}$ dia.	$5.7^{+0.5}$ dia.

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS CATALOG ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.
Know and observe all prohibitions of use applicable to this product. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.
```

Cat. No. D11E-EN-02A In the interest of product improvement, specifications are subject to change without notice.

Below is a list of articles with direct links to our shop Electric Automation Network where you can see:

- Quote per purchase volume in real time.
- Online documentation and datasheets of all products.
- Estimated delivery time enquiry in real time.
- Logistics systems for the shipment of materials almost anywhere in the world.
- Purchasing management, order record and tracking of shipments.

To access the product, click on the green button.

Product	Code	Reference	Product link
Proximity sensor, inductive, 4 mm dia, shielded, $0.8 \mathrm{~mm}, \mathrm{DC}$, 3-wire, NPN-NO, $2 m$ cable	103844	E2E-CR8C1	Buy on EAN
Proximity sensor	133304	E2E-X1C2	Buy on EAN
Proximity sensor, inductive, 4 mm dia, shielded, 0.8 mm , DC, 3-wire, PNP-NO, 2 m cable	133325	E2E-CR8B1	Buy on EAN
Proximity sensor, inductive, M5, shielded, 1mm, DC, 3-wire, PNP-NO, 2m cable	133327	E2E-X1B1	Buy on EAN
Proximity sensor, inductive, 5.4 mm dia, shielded, 1 mm , DC, 3-wire, PNP-NO, 2m cable	133328	E2E-C1B1	Buy on EAN
Proximity sensor	149280	E2E-X1B2	Buy on EAN
Proximity sensor, inductive, 5.4 mm dia, shielded, 1 mm , DC, 3-wire, NPN-NO, $2 m$ cable	150350	E2E-C1C1	Buy on EAN
Proximity sensor, inductive, M5, shielded, 1mm, DC, 3-wire, NPN-NO, 2m cable	157043	E2E-X1C1	Buy on EAN
Proximity sensor, inductive, 4 mm dia, shielded, 0.8 mm , DC, 3-wire, PNP-NO, M8 connector	183173	$\begin{aligned} & \text { E2E-CR8B1- } \\ & \text { M5 } \end{aligned}$	Buy on EAN
Proximity sensor, inductive, M5, shielded, 1mm, DC, 3-wire, PNP-NO, M8 connector (3 pin)	183177	E2E-X1B1-M5	Buy on EAN
Proximity sensor, inductive, M5, shielded, 1mm, DC, 3-wire, NPN-NO, M8 connector (3 pin)	183178	E2E-X1C1-M5	Buy on EAN
Proximity sensor, inductive, M5, shielded, 1mm, DC, 3-wire, PNP-NC, M8 connector	183179	E2E-X1B2-M5	Buy on EAN
Proximity sensor	183175	$\begin{aligned} & \text { E2E-CR8B2- } \\ & \text { M5 } \end{aligned}$	Buy on EAN
	133303	E2E-CR8C2	Buy on EAN

| | 133326 | E2E-CR8B2 | Buy on EAN |
| :--- | :--- | :--- | :--- | :--- |
| Proximity sensor, inductive | 183180 | E2E-X1C2-M5 | Buy on EAN |

