General specifications

Product name
Part no.
EAN
Product Length/Depth
Product height
Product width
Product weight
Compliances
Certifications

Product Tradename

Product Type
Product Sub Type

Delivery program

Application

Type
Circuit breaker frame type
Number of poles
Amperage Rating
Release system
Special features

Fitted with:

Technical Data - Electrical

Voltage rating
Rated operating voltage Ue (UL) - max
Rated insulation voltage (Ui)
Rated impulse withstand voltage (Uimp) at auxiliary contacts
Rated impulse withstand voltage (Uimp) at main contacts
Rated operational current

Eaton Moeller series NZM molded case circuit breaker electronic NZMN2-ME200-NA

4015081170937
149 millimetre
195 millimetre
105 millimetre
2.557 kilogram

RoHS conform
CSA-C22.2 No. 5-09
CSA (Class No. 1432-01)
CE marking
UL (Category Control Number DIVQ)
CSA (File No. 22086)
IEC
UL (File No. E31593)
IEC/EN 60947
UL508
UL 489
UL/CSA
CSA certified
UL listed
IEC 60947-2
Specially designed for North America
NZM
Molded case circuit breaker
Electronic

Branch circuits, feeder circuits
Use in unearthed supply systems at 690 V
Circuit breaker
NZM2
Three-pole
200 A
Electronic release
Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn)
Rated current = rated uninterrupted current: 200 A
Switches conform to UL/CSA as well as the IEC regulations. IEC switching performance values are contained on the rating plate.
100\% rated
For use in motor circuits with contactor.
Additional motor protective characteristics (calibration) to UL508, CSA-C22.2 No.
14-05.
Adjustable overload releases Ir
adjustable time delay setting to overcome current peaks tr: $2-20 \mathrm{~s}$ at $6 \mathrm{x} \operatorname{lr}$
Thermal protection

690 V - 690 V
480 V
1000 V
6000 V
8000 V
200 A (690 V AC-1, making and breaking capacity) 300 A (415 V AC-1, making and breaking capacity) 300 A (400 V AC-1, making and breaking capacity) 200 A (660-690 V AC-3, making and breaking capacity)
1.9 kA
1.9 kA

Instantaneous current setting (ii) - min	200 A
Instantaneous current setting (li) - max	2800 A
Overload current setting (Ir) - min	100 A
Overload current setting (Ir) - max	200 A
Short-circuit release non-delayed setting - min	400 A
Short-circuit release non-delayed setting - max	2800 A
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	85 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at 400/415 V, $50 / 60 \mathrm{~Hz}$	35 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	35 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	25 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	5 kA
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	187 kA
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	105 kA
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	74 kA
Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	53 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	40 kA
Motor power at 460/480 V (UL)	150 HP
Rated operating power at $\mathrm{AC}-3,230 \mathrm{~V}$	55 kW
Rated operating power at $\mathrm{AC}-3,400 \mathrm{~V}$	110 kW
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Low-voltage HBC fuse - max	$355 \mathrm{AgG} / \mathrm{gL}$
Electrical connection type of main circuit	Screw connection
Isolation	300 V AC (between the auxiliary contacts) 500 V AC (between auxiliary contacts and main contacts)
Number of operations per hour - max	120
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	10000 operations at 400 V AC-1 7500 operations at $690 \mathrm{~V} \mathrm{AC}-1$ 6500 operations at $400 \mathrm{~V} \mathrm{AC}-3$ 5000 operations at $690 \mathrm{~V} \mathrm{AC}-3$ 6500 operations at $415 \mathrm{~V} \mathrm{AC}-3$
Direction of incoming supply	As required
Technical Data - Mechanical	
Mounting Method	Built-in device fixed built-in technique Fixed
Degree of protection	IP20 IP20 (basic degree of protection, in the operating controls area)
Degree of protection (IP), front side	IP66 (with door coupling rotary handle) IP40 (with insulating surround)
Degree of protection (terminations)	IP00 (terminations, phase isolator and strip terminal) IP10 (tunnel terminal)
Protection against direct contact	Finger and back-of-hand proof to VDE 0106 part 100
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Switch off technique	Electronic
Climatic proofing	Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) Rated current = rated uninterrupted current: 200 A Switches conform to UL/CSA as well as the IEC regulations. IEC switching performance values are contained on the rating plate. 100% rated For use in motor circuits with contactor. Additional motor protective characteristics (calibration) to UL508, CSA-C22.2 No. 14-05. Adjustable overload releases ir adjustable time delay setting to overcome current peaks tr: $2-20 \mathrm{~s}$ at $6 \times$ Ir
Lifespan, mechanical	20000 operations
Technical Data - Mechanical - Terminals	
Standard terminals	Screw terminal

Terminal capacity (control cable)	$\begin{aligned} & 16 \mathrm{~mm}^{2}-18 \mathrm{~mm}^{2}(2 \mathrm{x}) \\ & 14 \mathrm{~mm}^{2}-18 \mathrm{~mm}^{2}(1 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (copper busbar)	M8 at rear-side screw connection Min. $16 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection
Terminal capacity (copper solid conductor/cable)	$6 \mathrm{~mm}^{2}-12 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal $16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $6 \mathrm{~mm}^{2}-11 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection
Terminal capacity (copper stranded conductor/cable)	$4 \mathrm{~mm}^{2}-350 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $4 \mathrm{~mm}^{2}-3 / 0 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $4 \mathrm{~mm}^{2}-350 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal
Terminal capacity (copper strip)	Min. 2 segments of $9 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal Max. 10 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at rear-side connection (punched) Min. 2 segements of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at rear-side connection (punched) Max. 10 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal
Design verification as per IEC/EN 61439 - technical data	
Rated operational current for specified heat dissipation (In)	200 A
Equipment heat dissipation, current-dependent	33 W
Ambient operating temperature - min	$-25^{\circ} \mathrm{C}$
Ambient operating temperature - max	$70^{\circ} \mathrm{C}$
Ambient storage temperature - min	$40^{\circ} \mathrm{C}$
Ambient storage temperature - max	$70^{\circ} \mathrm{C}$
Design verification as per IEC/EN 61439	
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of assemblies	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.
Additional information	
Functions	Motor protection Phase failure sensitive Current limiting circuit breaker

Technical data ETIM 9.0

Low-voltage industrial components (EG000017) / Motor protection circuit-breaker (EC000074)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Motor protection circuit-breaker (ecl@ss13-27-37-04-01 [AGZ529021])

Overload release current setting
Adjustment range undelayed short-circuit release
With thermal overload protection
Phase failure sensitive

100-200
A 200-2800
Yes
Yes

Switch off technique		Electronic
Rated operating voltage	V	690-690
Rated permanent current lu	A	200
Rated operation power at AC-3, 230 V	kW	55
Rated operation power at $\mathrm{AC}-3,400 \mathrm{~V}$	kW	110
Power loss	W	33
Type of electrical connection of main circuit		Screw connection
Type of control element		Rocker lever
Device construction		Built-in device fixed built-in technique
With integrated auxiliary switch		No
With integrated under voltage release		No
Number of poles		3
Rated short-circuit breaking capacity Icu at $400 \mathrm{~V}, \mathrm{AC}$	kA	35
Degree of protection (IP)		IP20
Height	mm	195
Width	mm	105
Depth	mm	149

