General specifications

Product name
Part no.
EAN
Product Length/Depth
Product height
Product width
Product weight
Compliances
Certifications

Product Tradename
Product Type
Product Sub Type
Delivery program
Application

Type
Circuit breaker frame type
Number of poles
Amperage Rating
Release system
Features
Special features

Technical Data - Electrical

Voltage rating
Rated operating voltage Ue (UL) - max
Rated insulation voltage (Ui)
Rated impulse withstand voltage (Uimp) at auxiliary contacts
Rated impulse withstand voltage (Uimp) at main contacts
Rated operational current

Instantaneous current setting (li) - min
Instantaneous current setting (li) - max
Overload current setting (lr) - min
Overload current setting (Ir) - max
Short delay current setting (Isd) - min
Short delay current setting (Isd) - max

Eaton Moeller series NZM molded case circuit breaker thermo-magnetic
NZMN1-AF40-NA
4015082742232
88 millimetre
165.5 millimetre

90 millimetre
1.046 kilogram

RoHS conform
UL 489
CSA (File No. 22086)
UL/CSA
UL (Category Control Number DIVQ)
UL (File No. E31593)
IEC/EN 60947
IEC 60947-2
CSA certified
CE marking
IEC
Specially designed for North America
CSA-C22.2 No. 5-09
UL listed
CSA (Class No. 1432-01)
NZM
Molded case circuit breaker
Thermo-magnetic

Branch circuits, feeder circuits
Use in unearthed supply systems at 690 V
Circuit breaker
NZM1
Three-pole
40 A
Thermomagnetic release
Protection unit
Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn)
Rated current = rated uninterrupted current: 40 A
Switches conform to UL/CSA as well as the IEC regulations. IEC switching
performance values are contained on the rating plate.
Fixed overload releases Ir
$690 \mathrm{~V}-690 \mathrm{~V}$
$480 \mathrm{Y} / 277 \mathrm{~V}$
690 V AC
6000 V
6000 V
160 A (380/400 V AC-1, making and breaking capacity)
40 A (690 V AC-1, making and breaking capacity)
125 A (415 V AC-1, making and breaking capacity)
40 A (660-690 V AC-3, making and breaking capacity)

Short-circuit release non-delayed setting - min	320 A
Short-circuit release non-delayed setting - max	400 A
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	85 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at 400/415 V, 50/60 Hz	50 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	35 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	10 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	7.5 kA
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	187 kA
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	105 kA
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	74 kA
Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	40 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	17 kA
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Low-voltage HBC fuse - max	$200 \mathrm{AgG} / \mathrm{gL}$
Electrical connection type of main circuit	Frame clamp
Isolation	500 V AC (between auxiliary contacts and main contacts) 300 V AC (between the auxiliary contacts)
Number of operations per hour - max	120
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	10000 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 7500 operations at $690 \mathrm{~V} \mathrm{AC}-1$
Direction of incoming supply	As required
Technical Data - Mechanical	
Mounting Method	Fixed DIN rail (top hat rail) mounting optional Built-in device fixed built-in technique
Degree of protection	IP20 (basic degree of protection, in the operating controls area) IP20
Degree of protection (IP), front side	IP40 (with insulating surround) IP66 (with door coupling rotary handle)
Degree of protection (terminations)	IPOO (terminations, phase isolator and strip terminal) IP10 (tunnel terminal)
Protection against direct contact	Finger and back-of-hand proof to DIN EN 50274/VDE 0106 part 110
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Number of auxiliary contacts (change-over contacts)	0
Number of auxiliary contacts (normally closed contacts)	0
Number of auxiliary contacts (normally open contacts)	0
Position of connection for main current circuit	Front side
Climatic proofing	Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) Rated current = rated uninterrupted current: 40 A Switches conform to UL/CSA as well as the IEC regulations. IEC switching performance values are contained on the rating plate. Fixed overload releases Ir
Lifespan, mechanical	20000 operations
Technical Data - Mechanical - Terminals	
Standard terminals	Box terminal
Terminal capacity (control cable)	$\begin{aligned} & 14 \mathrm{~mm}^{2}-18 \mathrm{~mm}^{2}(1 \mathrm{x}) \\ & 16 \mathrm{~mm}^{2}-18 \mathrm{~mm}^{2}(2 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (copper busbar)	Min. $12 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection M8 at rear-side screw connection Max. $16 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection
Terminal capacity (copper solid conductor/cable)	$16 \mathrm{~mm}^{2}-95 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $6 \mathrm{~mm}^{2}-12 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $6 \mathrm{~mm}^{2}-9 \mathrm{~mm}^{2}(2 x)$ direct at switch rear-side connection $6 \mathrm{~mm}^{2}-12 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal

Terminal capacity (copper stranded conductor/cable)

Terminal capacity (copper strip)

Design verification as per IEC/EN 61439 - technical data	
Rated operational current for specified heat dissipation (In)	40 A
Equipment heat dissipation, current-dependent	10.66 W
Ambient operating temperature - min	$-25^{\circ} \mathrm{C}$
Ambient operating temperature - max	$70^{\circ} \mathrm{C}$
Ambient storage temperature - min	$40^{\circ} \mathrm{C}$
Ambient storage temperature - max	$70^{\circ} \mathrm{C}$
Design verification as per IEC/EN 61439	
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of assemblies	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.
Additional information	
Functions	System and cable protection Current limiting circuit breaker

Technical data ETIM 9.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)
Electric engineering, automation, process control engineering/Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss13-27-37-04-09 [AJZ716018])

Rated permanent current lu
Rated voltage
Rated short-circuit breaking capacity Icu at $400 \mathrm{~V}, 50 \mathrm{~Hz}$
Overload release current setting
Adjustment range short-term delayed short-circuit release
Adjustment range undelayed short-circuit release
Power loss
Device construction
Integrated earth fault protection
Type of electrical connection of main circuit
Suitable for DIN rail (top hat rail) mounting
DIN rail (top hat rail) mounting optional
$25 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal
$25 \mathrm{~mm}^{2}-70 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box termina
$4 \mathrm{~mm}^{2}-2 / 0 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection
$4 \mathrm{~mm}^{2}-3 / 0 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Max. 9 segments of $9 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal
Min. 2 segments of $9 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal

Meets the product standard's requirements.
Meets the product standard's requirements.

Meets the product standard's requirements.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated
eets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
都
panel builder's responsibility.
s the panel builder's responsibility.

The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
urrent limiting circuit breaker

Number of auxiliary contacts as normally closed contact 0
Number of auxiliary contacts as normally open contact 0
Number of auxiliary contacts as change-over contact 0
With switched-off indicator No
With integrated under voltage release No
Number of poles 3
Position of connection for main current circuit Front side
Type of control element
Complete device with protection unit
Rocker lever
Yes
Motor drive integrated
No
Motor drive optional
No
Degree of protection (IP) IP20

