DATASHEET - LZMN3-AE630-I

Circuit-breaker, 3 p, 630A

Part no.
LZMN3-AE630-I
Powering Business Worldwide" 111969

General specifications	
Product name	Eaton Moeller series Power Defense molded case circuit-breaker
Part no.	LZMN3-AE630-I
EAN	4015081115174
Product Length/Depth	166 millimetre
Product height	275 millimetre
Product width	140 millimetre
Product weight	7.097 kilogram
Compliances	RoHS conform
Certifications	VDE 0660 IEC/EN 60947 IEC
Product Tradename	Power Defense
Product Type	Molded case circuit breaker
Product Sub Type	None
Delivery program	
Application	Use in unearthed supply systems at 690 V
Type	Circuit breaker
Circuit breaker frame type	LZM3
Number of poles	Three-pole
Amperage Rating	630 A
Release system	Electronic release
Features	Protection unit Motor drive optional
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) R.m.s. value measurement and "thermal memory" Rated current = rated uninterrupted current: 630 A
Technical Data - Electrical	
Voltage rating	$690 \mathrm{~V}-690 \mathrm{~V}$
Rated insulation voltage (Ui)	1000 V AC
Rated impulse withstand voltage (Uimp) at auxiliary contacts	6000 V
Rated impulse withstand voltage (Uimp) at main contacts	8000 V
Rated operational current	500 A (750 V DC-1, making and breaking capacity) 500 A ($500 \mathrm{~V} \mathrm{DC-3} ,\mathrm{making} \mathrm{and} \mathrm{breaking} \mathrm{capacity)}$ $630 \mathrm{~A}(380 / 400 \mathrm{~V} \mathrm{AC}-1$, making and breaking capacity) $500 \mathrm{~A}(415 \mathrm{~V} \mathrm{AC}-1$, making and breaking capacity) 500 A (750 V DC-3, making and breaking capacity) 630 A ($690 \mathrm{~V} \mathrm{AC}-1$, making and breaking capacity) 500 A (500 V DC-1, making and breaking capacity) 450 A ($660-690 \mathrm{~V} \mathrm{AC}-3$, making and breaking capacity) 450 A ($415 \mathrm{~V} \mathrm{AC}-3$, making and breaking capacity)
Rated short-time withstand current ($\mathrm{t}=0.3 \mathrm{~s}$)	3.3 kA
Rated short-time withstand current ($\mathrm{t}=1 \mathrm{~s}$)	3.3 kA
Instantaneous current setting (li) - min	1260 A
Instantaneous current setting (li) - max	5040 A
Overload current setting (lr) - min	315 A
Overload current setting (Ir) - max	630 A
Short delay current setting (Isd) - min	0 A
Short delay current setting (Isd) - max	0 A
Short-circuit release non-delayed setting - min	1260 A
Short-circuit release non-delayed setting - max	5040 A
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	85 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at 400/415 V, 50/60 Hz	50 kA

Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	35 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	13 kA
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	187 kA
Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	105 kA
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	74 kA
Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	53 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	40 kA
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Electrical connection type of main circuit	Screw connection
Isolation	300 V AC (between the auxiliary contacts) 500 V AC (between auxiliary contacts and main contacts)
Number of operations per hour - max	60
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	2000 operations at $415 \mathrm{~V} \mathrm{AC}-3$ 5000 operations at 500 V DC-1 2000 operations at 500 V DC-3 2000 operations at 750 V DC-3 3000 operations at $690 \mathrm{~V} \mathrm{AC}-1$ 5000 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 5000 operations at 750 V DC-1 2000 operations at $400 \mathrm{~V} \mathrm{AC}-3$ 2000 operations at $690 \mathrm{~V} \mathrm{AC}-3$ 5000 operations at $415 \mathrm{~V} \mathrm{AC}-1$
Direction of incoming supply	As required
Technical Data - Mechanical	
Mounting Method	Fixed Built-in device fixed built-in technique
Degree of protection	IP20 In the area of the HMI devices: IP20 (basic protection type)
Degree of protection (IP), front side	IP66 (with door coupling rotary handle) IP40 (with insulating surround)
Degree of protection (terminations)	IP10 (tunnel terminal) IP00 (terminations, phase isolator and band terminal)
Protection against direct contact	Finger and back-of-hand proof to DIN EN 50274/VDE 0106 part 110
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Number of auxiliary contacts (change-over contacts)	0
Number of auxiliary contacts (normally closed contacts)	0
Number of auxiliary contacts (normally open contacts)	0
Position of connection for main current circuit	Front side
Climatic proofing	Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30
Special features	Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated short-circuit breaking capacity Icn) R.m.s. value measurement and "thermal memory" Rated current = rated uninterrupted current: 630 A
Lifespan, mechanical	15000 operations
Technical Data - Mechanical - Terminals	
Standard terminals	Screw terminal
Terminal capacity (control cable)	$\begin{aligned} & 0.75 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}(2 \mathrm{x}) \\ & 0.75 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}(1 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}$ (1 x) at tunnel terminal
Terminal capacity (aluminum stranded conductor/cable)	$\begin{aligned} & 50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 x) \text { at 2-hole tunnel terminal } \\ & 25 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x}) \text { at tunnel terminal } \\ & 50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 x) \text { at 2-hole tunnel terminal } \end{aligned}$
Terminal capacity (copper busbar)	M10 at rear-side screw connection Max. $30 \mathrm{~mm} \times 10 \mathrm{~mm}+30 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $10 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{x})$ at rear-side width extension Min. $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection
Terminal capacity (copper solid conductor/cable)	$16 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $16 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $300 \mathrm{~mm}^{2}(2 x)$ at rear-side width extension $16 \mathrm{~mm}^{2}(2 \mathrm{x})$ direct at switch rear-side connection $16 \mathrm{~mm}^{2}(2 x)$ at box terminal

Terminal capacity (copper strip)

Rated operational current for specified heat dissipation (In)
Equipment heat dissipation, current-dependent
Design verification as per IEC/EN 61439

10.2.2 Corrosion resistance

10.2.3.1 Verification of thermal stability of enclosures
10.2.3.2 Verification of resistance of insulating materials to normal heat
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects
10.2.4 Resistance to ultra-violet (UV) radiation
10.2.5 Lifting
10.2.6 Mechanical impact
10.2.7 Inscriptions
10.3 Degree of protection of assemblies
10.4 Clearances and creepage distances
10.5 Protection against electric shock
10.6 Incorporation of switching devices and components
10.7 Internal electrical circuits and connections
10.8 Connections for external conductors
10.9.2 Power-frequency electric strength
10.9.3 Impulse withstand voltage
10.9.4 Testing of enclosures made of insulating material
10.10 Temperature rise
10.11 Short-circuit rating
10.12 Electromagnetic compatibility
10.13 Mechanical function

Additional information

$25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 x)$ direct at switch rear-side connection $25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ direct at switch rear-side connection $35 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal
$25 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
$25 \mathrm{~mm}^{2}-120 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal
Min. 6 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at box terminal 10 segments of $50 \mathrm{~mm} \times 1 \mathrm{~mm}(2 x)$ at rear-side width extension Min. 6 segments of $16 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ at rear-side connection (punched) Max. 10 segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $32 \mathrm{~mm} \times 1 \mathrm{~mm}$ at rear-side connection (punched)
Max. 10 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}+5$ segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}$ Max. 8 segments of $24 \mathrm{~mm} \times 1 \mathrm{~mm}(2 x)$ at box terminal

630 A

119.07 W

Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

