

Data Sheet

Temperature regulating valve Type **ORV**

Assures optimal oil temperature control in refrigeration systems

ORV are 3-way industrial valves for maintaining a constant oil temperature in gas compressor systems, by mixing hot and cold oil in the lubricating system of e.g. screw or turbo type compressors.

The ORV valves are with few components and with extended cylindrical connections, to ensure ease of installation and service.

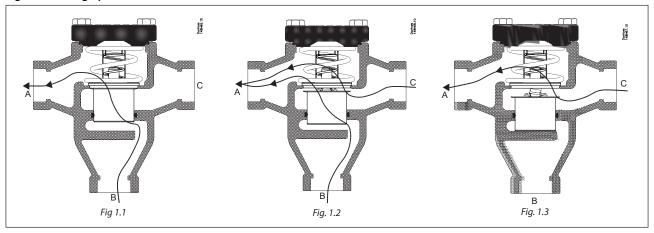
Features

- Stainless steel nickel plated thermostatic element.
- Butt-weld (DIN, ANSI) or socket weld (SOC) connection.
- No manual adjustment.
- · Plug and Play design.
- Optimised flow characteristics.
- · Robust design.
- · High resistance against vibrations or shock.
- Can be mounted in any direction.
- Easy to dismantle and service when required.
- Classification: DNV, CRN, BV, EAC etc. To get an updated list of certification on the products please contact your local Danfoss Sales Company.

Functions

Mixing operation

ORV valve can work as a mixing or diverting valve. The ORV temperature regulating valve utilises high coefficient of thermal expansion of wax to create the internal movement necessary to have a cold and a hot inlet mixing to a common outlet. The outlet temperature corresponds to the nominal temperature of the thermostatic element.


The valve house has three ports:

- Port A is used for the common outlet
- Port B is for the hot inlet
- Port C is for the cold inlet

When the compressor unit is cold at start up, the thermostatic element will be contracted to let the full fow from port B pass until the nominal temperature (-5K / 10 °F) is reached (Fig. 1.1). The thermostatic element will then begin to extract to let the outlet become a mixture of hot and cold oil.

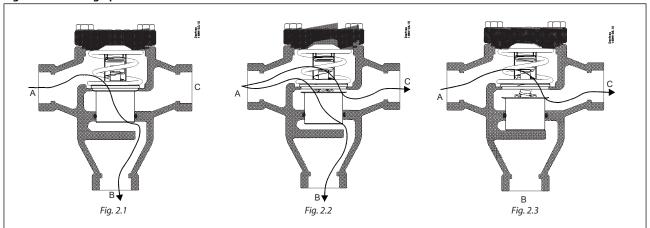
When the nominal temperature is reached, the element is positioned in approximately half open position (Fig. 1.2). If the temperature is reaching approximately the nominal temperature plus 5K, the thermostatic element has been extracted to its fully open position (Fig. 1.3). In this position the oil temperature will only come from the cold inlet port (C) from oil cooler.

Figure 1: Mixing operation

From Figure 1: Mixing operation, it can be seen how the sleeve on the element is sliding in a vertical direction. The thermostatic element is kept in position by a spring.

Diverting operation

Diverting operation is similar to the mixing operation. It is carried out with separation in to two of the fluid with single temperature. Due to that the temperature on the inlet is very stable fact the regulation is very smooth. The inlet temperature would correspond to the nominal temperature of the thermostatic element.


The valve house has three ports:

- Port A is used for the common inlet
- Port B is for the cold outlet
- Port C is for the warm outlet

The diverting operation otherwise is similar to the mixing operation.

Figure 2: Diverting operation

Application

Examples

Figure 3: Example of the system with ORV for mixing operation

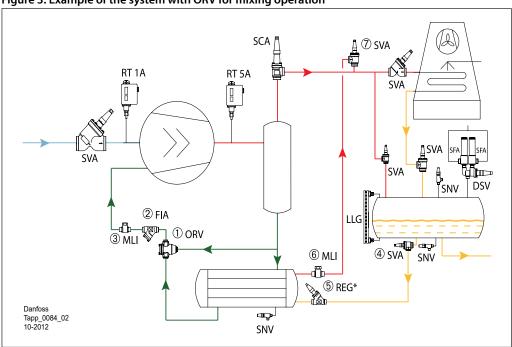
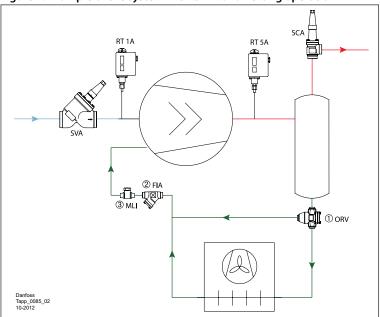



Figure 4: Example of the system with ORV for diverting operation

Media

Refrigerants

Oils:

Applicable to all common refrigeration oils.

Refrigerants:

Applicable to HC, HCFC, HFC, R717 (Ammonia) and R744 (CO₂).

For further information please refer to installation instruction for ORV.

New refrigerants

Danfoss products are continually evaluated for use with new refrigerants depending on market requirements.

When a refrigerant is approved for use by Danfoss, it is added to the relevant portfolio, and the R number of the refrigerant (e.g. R513A) will be added to the technical data of the code number. Therefore, products for specific refrigerants are best checked at store.danfoss.com/en/, or by contacting your local Danfoss representative.

Product specification

Pressure and temperature data

Table 1: Pressure and temperature range

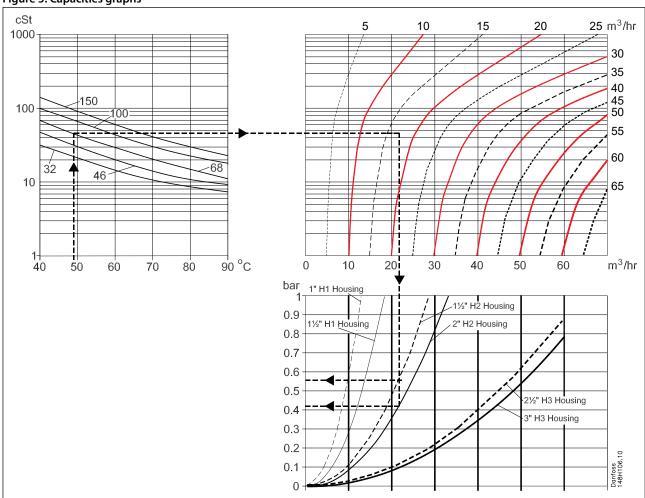

Description	Values
Minimum operating temperature:	≥ -10 °C (+14 °F)
The valves are designed for a max. working pressure	40 bar (580 psig)

Table 2: Max. temperature limit based on the element temperature settings

Types	Limit
43 °C / 110 °F	77 °C / 170 °F
49 °C / 120 °F	82 °C / 180 °F
60 °C / 140 °F	93 °C / 200 °F
77 °C / 170 °F	110 °C / 230 °F

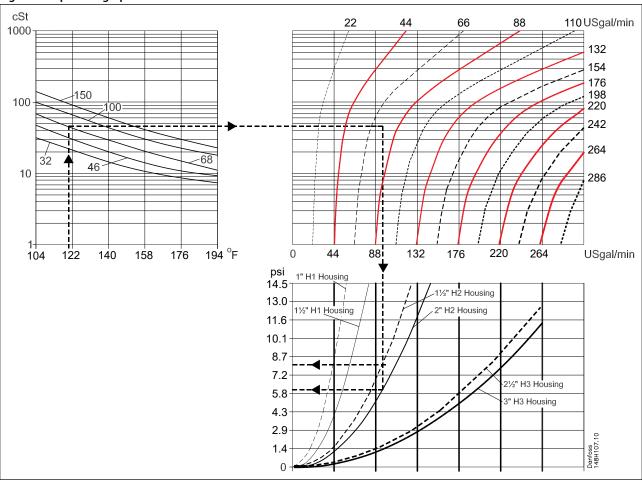
Capacities, SI units

Figure 5: Capacities graphs

Selection example

Oil type: Grade 68 Required flow: 17 m³/h Nominal oil temperature: 49 °C Pipe dimension: 40 mm

The upper left curve shows the viscosity of different grades of oil as a function of the temperature. The viscosity is continued into the upper right curve where the 17 m³/h must be found. The line is drawn vertically downwards into the capacity table for the ORV valve models.


As shown two selections can be made:

Either ORV 40 H2 with pressure drop at approx. 0.56 bar or ORV 50 H2 with pressure drop at 0.42 bar.

The final selection will depend on the available pressures in the system. If the pressures are low (or can be low at certain loads) the ORV 50 H2 might be preferred. If the pressures are constantly available the pipe dimension may be taken into account and the ORV 40 H2 might be preferred.

Capacities, US units

Figure 6: Capacities graph

Selection example

Oil type: Grade 68

Required flow: 75 USgal/min. Nominal oil temperature: 120 °F

Pipe dimension: 11/2"

The upper left curve shows the viscosity of different grades of oil as a function of the temperature. The viscosity is continued into the upper right curve where the 75 USgal/min. must be found. The line is drawn vertically downwards into the capacity table for the ORV valve models.

As shown two selections can be made: Either

- ORV 11/2H2 with pressure drop 8.2 psi or
- ORV 2"H2 with pressure drop 6.2 psi

The final selection will depend on the available pressures in the system. If the pressures are low (or can be low at certain loads) the ORV 2" H2 might be preferred. If the pressures are constantly available the pipe dimension may be taken into account and the ORV $1\frac{1}{2}$ " H2 might be preferred.

Material specification

Figure 7: ORV 25-80

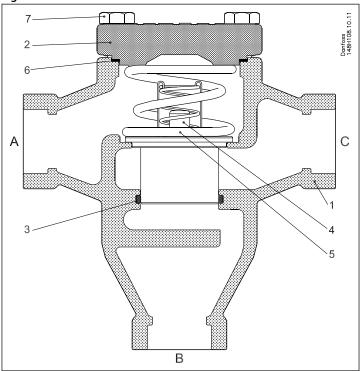


Table 3: Material and parts list

No.	Part	Material	E	N	ASTM s	tandard
1	Housing	Steel	GP240GH	10213-2	WCB	A 216
2	Cover	Steel	GP240GH P285QH	10213-2 10222-4	WCB	A 216 A 350
3	Glide ring	PTFE				
4	Element ⁽¹⁾	Stainless steel and NI plated parts				
5	Spring	Steel	DIN17223	10270-1		
6	Gasket	Non asbestos				
7	Bolts	Steel	Quality 8.8	ISO4017	Grade 5	

⁽¹⁾ The thermostatic element may look differently from one shown on the picture. All types of thermostats used by Danfoss have the same function, temperature setting and P-band.

Connections

Available with the following connections:

- Butt weld DIN (EN 10220), DN 25-80 (1-3 in.)
- Butt weld ANSI (B 36.10 Schedule 80), DN 25 40 (1 11/2 in.)
- Butt weld ANSI (B 36.10 Schedule 40), DN 50 80 (2 3 in.)
- Socket Weld (ANSI B 16.11), DN 25 50 (1 2 in.)

Figure 8: Identification example

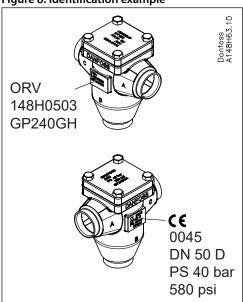


Figure 9: DIN

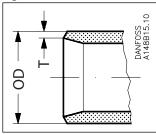


Table 4: Butt-weld DIN (EN10220)

	(
Size	Size	OD	т	OD	т		/ C _v ousing		/ C _v ousing		/ C _v ousing
mm	in	mm	mm	in	in	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min
25	1	33.7	2.6	1.327	0.103	15	17	-	-	-	-
40	11/2	48.3	2.6	1.902	0.103	22	26	30	35	-	-
50	2	60.3	2.9	2.37	0.11	-	-	36	42	-	-
65	21/2	76.1	2.9	3	0.11	-	-	-	-	65	75
80	3	88.9	3.2	3.5	0.13	-	-	-	-	75	87

Figure 10: ANSI

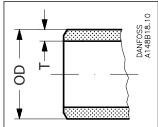


Table 5: Butt-weld ANSI (B 36.10 Schedule 80)

Size	Size	OD	т	OD T		K _v / C _v H1 housing		K _v / C _v K _v / C _v H1 housing H2 housing		K _v . H3 ho	/ C _v ousing
mm	in	mm	mm	in	in	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min
25	1	33.7	4.6	1.327	0.181	15	17	-	-	-	-
40	11/2	48.3	5.1	1.902	0.201	22	26	30	35	-	-

Table 6: Butt-weld ANSI (B 36.10 Schedule 40)

Size	Size	OD	т	OD	т	K _v / C _v H1 housing					/ C _v ousing	K _v . H3 ha	/ C _v ousing
mm	in	mm	mm	in	in	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min	K _v m³/h	C _v Usgal/min		
50	2	60.3	3.9	2.37	0.15	-	-	36	42	-	-		
65	21/2	73	5.2	2.87	0.2	-	-	-	-	65	75		
80	3	88.9	5.5	3.5	0.22	-	-	-	-	75	87		

Figure 11: SOC

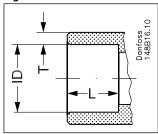


Table 7: Socket welding ANSI (B 16.11)

Size	Size	ID	Ţ	ID	_			K _v H1 ho	/ C _v ousing	K _v . H2 ho		K _v . H3 ho	v
mm	in	mm	mm	in	in	mm	in	K _v m³/h	C _v Usgal/ min	K _v m³/h	C _v Usgal/ min	K _v m³/h	C _v Usgal/ min
25	1	33.9	7.2	1.335	0.284	13	0.51	15	17	-	-	-	-
40	11/2	48.8	6.6	1.921	0.26	13	0.51	-	-	30	35	-	-
50	2	61.2	6.2	2.41	0.24	16	0.63	-	-	36	42	-	-

Dimensions and weights

Figure 12: H1, H2 and H3 housing types

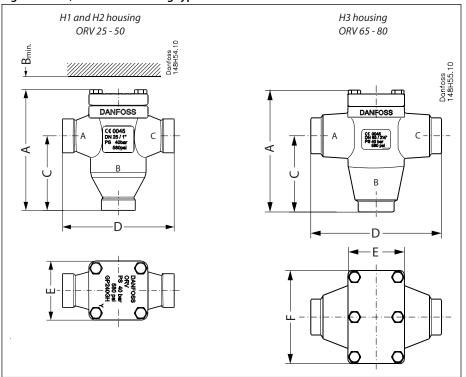


Table 8: Valve size and type

Туре	Valve	e size	А	B _{MIN} .	С	D	E	F	Weight
H1 housing	ORV 25-40	mm	178	75	110	165	87	-	4.5 kg
rir nousing	(1-11/2)	in.	7.00	3.00	4.33	6.50	3.43	-	10 lb
H2 housing	ORV 40-50	mm	215	80	138	196	110	-	9.0 kg
112 flousing	(1½-2)	in.	8.46	3.15	5.43	7.72	4.33	-	20 lb
H3 housing	ORV 65-80	mm	252	80	155	266	115	190	18 kg
ris flousing	(21/2-3)	in.	9.92	3.15	6.10	10.47	4.53	7.48	40 lb

• NOTE:

Specified weights are approximate values only.

Ordering

Type codes

Table 9: ORV valve type and size

Valve type	ORV	Oil regu	lating valve, high spec	ification
		DIN	ANSI	SOC
Nominal size in mm	25	X	Χ	X
(valve size measured on the connection diam-	40	X	Χ	X
eter)	50	X	Χ	Χ
	65	X	Χ	
	80	X	Χ	
Connection	A D SOC	Butt weld connection: ANSI Butt weld connection: DIN Socket welding		
Valve housing	3-WAY	3-WAY		

• IMPORTANT:

Where products need to be certified according to specific certification societies or where higher pressures are required, the relevant information should be included at the time of ordering.

Ordering ORV valves from the parts programme

Example:

ORV 40 DIN H2 49 °C /120 °F:

Thermostat element and cover gasket code number 148H3464 and Complete valve housing code number 148H3402

Table 10: ORV parts programme

. a.o. c par to programme		
Thermostat		Code no.
	ORV 25 and ORV 40 H1	148H3466
Thermostat 43 °C /110 °F	ORV 40 and ORV 50 H2	148H3467
	ORV 65 and ORV 80 H3	148H3468 ⁽¹⁾
Thermostat 49 °C /120 °F	ORV 25 and ORV 40 H1	148H3463
	ORV 40 and ORV 50 H2	148H3464
	ORV 65 and ORV 80 H3	148H3465 ⁽¹⁾
	ORV 25 and ORV 40 H1	148H3469
Thermostat 60 °C /140 °F	ORV 40 and ORV 50 H2	148H3470
	ORV 65 and ORV 80 H3	148H3471 ⁽¹⁾
	ORV 25 and ORV 40 H1	148H3472
Thermostat 77 °C /170 °F	ORV 40 and ORV 50 H2	148H3473
	ORV 65 and ORV 80 H3	148H3474 ⁽¹⁾

⁽¹⁾ For valve housing size H3 the code number includes two H2 thermostats.

The thermostat code numbers do not include guide ring.

Gasket and guide ring are included when ordering the complete valve housing but can also be ordered separately as spare parts.

Table 11: Valve housing

Code no.
148H3399
148H3400
148H3401
148H3361
148H3402
148H3403
148H3404

Temperature regulating valve, type ORV

Complete valve housing including gasket and guide ring but without thermostat	Code no.
ORV 40 ANSI H2	148H3405
ORV 50 DIN H2	148H3406
ORV 50 SOC H2	148H3407
ORV 50 ANSI H2	148H3408
ORV 65 DIN H3	148H3409
ORV 65 ANSI H3	148H3410
ORV 80 DIN H3	148H3362
ORV 80 ANSI H3	148H3411

ORV spare parts

Table 12: Spare parts

Part	Spare parts for Code no.	
Gasket and guide ring	ORV 25 and ORV 40 H1	148H3246
	ORV 40 and ORV 50 H2	148H3247
	ORV 65 and ORV 80 H3	148H3248 ⁽¹⁾

 $[\]ensuremath{^{\text{(1)}}}$ Including two guide rings and one gasket.

Certificates, declarations, and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 13: Pressure Equipment Directive (PED)

ORV valves are approved according to the European standard specified in the Pressure Equipment Directive and are CE marked. For further details / restrictions - see Installation Instruction.

File name	Document type	Document topic	Approval authority
RU Д-DK.БЛ08.B.00191_18	EAC Declaration	Machinery & Equipment	EAC
0045 202 1204 Z 00354 19 D 001(00)	Pressure - Safety Certificate	-	TÜV
RU Д-DK.PA01.B.72054_20	EAC Declaration	PED	EAC
033F0685.AK	EU Declaration	EMCD/PED	Danfoss
TS271067J-2023	Manufacturing Permission	TSG	AQSIQ
033F0691.AE	Manufacturers Declaration	RoHS	Danfoss
033F0686.AH	Manufacturers Declaration	PED	Danfoss
033F0691.AE	Manufacturers Declaration	RoHS	Danfoss
19.10325.266	Marine - Safety Certificate	-	RMRS

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Spare Parts

Get access to the Danfoss spare parts and service kit catalog right from your smartphone. The app contains a wide range of components for air conditioning and refrigeration applications, such as valves, strainers, pressure switches, and sensors.

Download the Spare Parts app for free at www.danfoss.com/en/service-and-support/downloads.

Coolselector®2 - find the best components for you HVAC/R system

Coolselector®2 makes it easy for engineers, consultants, and designers to find and order the best components for refrigeration and air conditioning systems. Run calculations based on your operating conditions and then choose the best setup for your system design.

Download Coolselector®2 for free at coolselector.danfoss.com.

Danfoss A/S

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or further that the sending