# Dupline ${ }^{\circledR}$ Profibus-DP Gafeway Passive with safety mapping Type GS 38910125 



## Product Description

Dupline ${ }^{\circledR}$ Gateway with the function of a PROFIBUS-DP slave. This means that the Dupline ${ }^{\circledR}$ I/O's (incl. Dupline ${ }^{\circledR}$ Safe signals) can be read/controlled by PROFI-BUS-DP masters (PLC's, PC interface cards, etc. from various suppliers). Several

Dupline ${ }^{\circledR}$ gateways can be connected to the same Dupline ${ }^{\circledR}$ network. The unit is certified by PNO (Profibus Nutzer Organisation) which ensures compatibility and interoperability with other PNO-certified products.

Input/Output Specifications

| PROFIBUS-DP | RS 485 |
| :---: | :---: |
|  | 9 -pole female SUB-D |
| Pin assignment A | Pin 8 |
| B | Pin 3 |
| RTS | Pin 4 |
| +5V | Pin 6 |
| GND | Pin 5 |
| Baudrate | Auto detection |
| Cable length | 100 m @ 12 MBaud |
|  | 200 m @ 1.5 MBaud |
|  | $1200 \mathrm{~m} @ 93.75$ kBaud |
| Up-date time (128 digital I/O) | Typ. $200 \mu \mathrm{~s}$ at 12 MBaud |
|  | Typ. 1.6 ms at 1.5 MBaud |
| Dielectric voltage |  |
| PROFIBUS-DP Dupline ${ }^{\circledR}$ | $\geq 4 \mathrm{kVAC}$ (rms) |
| PROFIBUS-DP ID-no. | 6590 |
| GSD-file | GS38_125.gsd |
| Adjustments |  |
| $2 \times 10$ pos. rotary switch | PROFIBUS Slave Address Range 02 to 99 |
| $1 \times 16$ pos. rotary switch | Not used |
| DIP-switch 1 | Not used |
| DIP-switch 2 | Not used |
| DIP-switch 3 | Not used |
| DIP-switch 4 | Off in normal mode |
| Approvals |  |
| PROFIBUS operability | PNO <br> (Profibus Nutzer Organisation) |
| Conformity |  |
| CE | EMC Industrial Environment |

- Passive gateway without channel generator
- PROFIBUS-DP slave according to EN 50170
- Certified by the PNO
- Can be connected at any point in a Dupline ${ }^{\oplus}$ network
- Several gateways can be connected to the same Dupline ${ }^{\circledR}$ network
- cULus approved
- PROFIBUS-DP communication speed of up to 12 MBaud
- Read/control 128 standard inputs/outputs through PROFIBUS-DP
- 63 DuplineSafe signals can be read via the PROFIBUS-DP network
- For mounting on DIN-rail (EN 50 022)
- LED indicators for supply, Dupline ${ }^{\circledR}$ carrier and fault
- AC power supply

Ordering Key GS 38910125230

Duplinesafe
Type no
Supply

## Type Selection

| Supply | Ordering no. |
| :--- | :--- |
|  | GS 38910125230 |

## General Specifications

| Power ON delay | $<2.5$ s |
| :---: | :---: |
| Indication for <br> Supply ON <br> Dupline ${ }^{\circledR}$ carrier <br> Fault | LED, green <br> LED, yellow <br> LED, red |
| Environment <br> Degree of protection Pollution degree Operating temperature Storage temperature | IP 20 <br> 3 (IEC 60664) <br> $0^{\circ}$ to $+50^{\circ} \mathrm{C}\left(+32^{\circ}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ <br> $-20^{\circ}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ |
| Humidity (non-condensing) | 20 to 80\% RH |
| Mechanical resistance Shock Vibration | $\begin{aligned} & 15 \mathrm{G}(11 \mathrm{~ms}) \\ & 2 \mathrm{G}(6 \text { to } 55 \mathrm{~Hz}) \end{aligned}$ |
| Dimensions | $144 \times 77 \times 70 \mathrm{~mm}$ |
| Material | H8-housing |
| Weight | 540 g |
| Approvals | IEC/EN 61508-SIL3 <br> EN954 cat 4 <br> TÜV Rheinland Group c(UL)us |

## Supply Specifications

Power supply
Rated operational voltage
through term. 21, 22, 23 \& 24

Frequency
Rated operational power
Rated impulse withstand
voltage
Dielectric voltage
Suply - Dupline
Supply - RS 485

## Wiring Diagrams



## Mode of Operation

## The Dupline PROFIBUS-DP

 Gateway operates as a PROFIBUS-DP slave according to EN 50170. This means that the 128 Dupline ${ }^{\circledR}$ I/O's can be read/ controlled by PROFIBUSDP masters like PLC's and PC interface-cards from many different suppliers. Since the GS38910125 is a passive gateway without channel generator function, it is possible to connect several units to the same Dupline ${ }^{\circledR}$ network.
## Configuration switches

The unit is equipped with the following switches:
$1 \times$ 16-position rotary switch- not used in the GS38910125.
$2 \times 10$-position rotary switch for selection of the PROFIBUS-DP Slave Address in the range 02..99. (00.. 01 are reserved). Each module connected to PROFIBUS-DP must have a unique slave address which enables the PROFIBUS-DP Master to access the modules individually.
$4 \times$ DIPswitches - not used in the GS38910125.

Note: Dipswitch 4 must be off in operationel mode.

## Dupline ${ }^{\circledR}$ Input Data

To ease up the Profibus Master configuration, the GS38_125.gsd file is to be used. This file describes to the Master which I/O data the gateway supports.
All I/O data are selectable through so-called modules, each described with its particular function.
Digital Input, Digital output, Safety input etc. Through this, the individual configuration of the Gateway is quite simplified, as the user only has to select which I/O modules to use. The supported modules may be selected in any order and any combination.

The GS38910125 passive gateway supports Digital input module, and Digital output module, corresponding to the 128 channels of input and output data. Furthermore, the GS38910125 supports reading of Dupline - safe signals. This requires 2 bits of information per safety-signal. Thus, the information must be read like this:

00: Safe valid - Closed
10: Unsafe Valid - Open

* 11: Unsafe - Invalid condition
* 11 - is a situation where the system is in "Unsafe" mode, but either loses sync signal, bus signal disconnect or shortcircuit, etc.

All modules consist of 16 bytes of data, and the tables below describe the content and the relations to the Dupline data.

## Safe Principles:

Each safety module is using 2 channel adresses to send its signal. The possible selections are in the range A3/A4... P7/P8.
Which channel adress to be monitored by the safety module, must be defined. (Please note that the channel adress A1/A2 is not allowed in the system. A1 is always used for safe synchronization between all safe modules).

It has the state of "0" when A1 is OK, and the state of " 1 " when A1 is faulty. A2 is surveillance of the Dupline Bus. By the state " 0 ", the

Dupline Bus is OK and by the state "1" the Dupline Bus is faulty.

If all configured safety modules send a valid "safestate" signal, every relay contact on the output-modules will be closed. In any other case - Non-safe signals received from one or several safety modules or failure in the Dupline bus, the relays will stay open and keep the system in "safestate".

When starting up a safesystem, all contacts remain open until a valid "safestate" signal is received from alle safety modules.

If the Dupline ${ }^{\circledR}$ signal is missing or faulty, the gateway will set the input status of all channels to OFF.

## Reaction time

The reaction time for the total Dupline ${ }^{\circledR}$ safety-loop depends of the number of Dupline ${ }^{\circledR}$ channels, and the responsetime from the gateway $=$ max. 136 mSec . The response time, of the channels, can be calculated as:

## Mode of Operation (cont.)

Reaction time on relay release (worst-case): 2 x Number of Dupline ${ }^{\circledR}$ channels +40 [ms]
Note: Reaction time is for the total Dupline ${ }^{\circledR}$ safetyloop; from a safety input goes to non-safe state until the output relay is released.
Reaction time on relay activate (worst-case): $4 \times$ Num-
ber of Dupline ${ }^{\circledR}$ channels + 80 [ms].
Note: Reaction time is for the total Dupline ${ }^{\circledR}$ safetyloop; from a safety input goes to safe state until the output relay is activated.

Byte 0.. OFh Safety input module

| Byte addres | Dupline Channel | Safe Bits |
| :---: | :---: | :---: |
| 00 | x | 7.6 |
|  | A3-4 | 5.4 |
|  | A5-6 | 3.2 |
|  | A7-8 | 1.0 |
| 01 | B1-2 |  |
|  | B3-4 |  |
|  | B5-6 |  |
|  | B7-8 |  |
|  | - |  |
|  | - |  |
| 0F | P1-2 | 7.6 |
|  | P3-4 | 5.4 |
|  | P5-6 | 3.2 |
|  | P7-8 | 1.0 |
| Each safe input consists of 2 Safe Bits. The 2 bits are to be interpreted like this: |  |  |
|  |  |  |
| 00: Safe valid - Closed |  |  |
| 10: Unsafe Valid - Open |  |  |
| 11: Unsafe - Invalid condition |  |  |
| The 2 safe bits can be read as follows: |  |  |
| Example: |  |  |
| Safe bits: $\quad 7.6 .5 .4 .3 .2 .1 .0$ |  |  |
| Bit example: $001101 \underline{10}$ |  |  |
| Read "Byte adress" "01" and Dupline channel B7-8 |  |  |
| Now read Safe bits on place 1.0 to bit example 10 |  |  |
| This means that the Dupline channel is : SAFE OFF |  |  |

## Switch Settings



Not used


Profibus DP Slave Address 00 to 01 Reserved 02 to 99 Legal slave addresses

Byte 0.. OF ${ }_{\mathrm{h}}$ Digital input module

| Byte adress | Dupline Group | Bit | Channel Number |
| :---: | :---: | :---: | :---: |
| 0 | A | 7 | A1 |
| 0 | A | 6 | A2 |
| 0 | A | 5 | A 3 |
| 0 | - | - | - |
| 0 | A | 0 | A8 |
| 1 | B | 7 | B1 |
| 2 | C | 6 | C2 |
| - | - | - | - |
| E | O | 1 | O7 |
| F | P | 0 | P8 |

Byte 0.. OF $_{\mathrm{h}}$ Digital output module

| Byte adress | Dupline Group | Bit | Channel Number |
| :---: | :---: | :---: | :---: |
| 0 | A | 7 | A1 |
| 0 | A | 6 | A2 |
| 0 | A | 5 | A3 |
| 0 | - | - | - |
| 0 | A | 0 | A8 |
| 1 | B | 7 | B1 |
| 2 | C | 6 | C2 |
| - | - | - | - |
| E | O | 1 | O7 |
| F | P | 0 | P8 |

## Pin Assignment



## Dimensions (mm)

## H8-housing



