OmROn

RFID System
 V680 Series Hand-held Reader Writer User's Manual

θ

θ

Introduction

Thank you for purchasing a V680-series RFID System. This manual describes the functions, performance, and application methods needed for optimum use of the V680-series RFID System.

Please observe the following items when using the V680-series RFID System.

- Allow the V680-series RFID System to be installed and operated only by qualified specialist with a sufficient knowledge of electrical systems.
- Read and understand this manual before attempting to use the V680-series RFID System and use the V680-series RFID System correctly.
- Keep this manual in a safe and accessible location so that it is available for reference when required.

Introduction	READ AND UNDERSTAND THIS DOCUMENT	
Section 1	Product Overview	
Section 2	Communications Preparations	
Section 3	Commands	
Section 4	Functions	
Section 5	Troubleshooting	
Section 6	Appendices	

RFID System

V680-CHUD	Hand-held Reader Writer
V680-CH1D	Hand-held Reader Writer
V680-CH1D-PSI	Hand-held Reader Writer
V680 Series	ID Tags

User's Manual

READ AND UNDERSTAND THIS DOCUMENT

Please read and understand this document before using the products. Please consult your OMRON representative if you have any questions or comments.

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NONINFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS DOCUMENT ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PERFORMANCE DATA

Performance data given in this document is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

COPYRIGHT AND COPY PERMISSION

This document shall not be copied for sales or promotions without permission.
This document is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this document in any manner, for any other purpose. If copying or transmitting this document to another, please copy or transmit it in its entirety.

Safety Precautions

- Signal Words Used in This Manual

The following symbols are used in this manual to indicate precautions that must be observed to ensure safe use of the V680-series RFID System. The precautions provided here contain important safety information. Be sure to observe these precautions.
The following signal words are used in this manual.

$$
\text { 』 WARNING } \begin{aligned}
& \text { Indicates a potentially hazardous situation which, if not avoided, will result in minor or } \\
& \text { moderate injury, or may result in serious injury or death. Additionally, there may be sig- } \\
& \text { nificant property damage. }
\end{aligned}
$$

- Meanings of Alert Symbols
Indicates the possibility of explosion under specific conditions.

- Warning

\triangle WARNING

This Product is not designed or rated for ensuring safety of persons. Do not use it for such purposes.

Regulations and Standards

The Products conforms to the following overseas regulation and standards.

1. The United State

	Hand-held Reader Writers
FCC Part 15 Subpart C	V680-CH1D-PSI
FCC ID : OZGV680-CHXD	V680-CHUD
	V680-CH1D

FCC NOTICE

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) This device may not cause harmful interference.
(2) This device must accept any interference received, including interference that may cause undesired operation.

FCC WARNING

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
Do not remove the ferrite core (TKK Type TFT081610N) installed on the cables to suppress RF interference.

2. Europe

	Antennas
(Radio and Telecommunication Terminal Equipment Directive 1999/5/EC)	V680-CH1D-PSI
Radio Directives : EN 300 330-2	V680-CHUD
EMC Directives : EN 300 330-1	V680-CH1D
	EN 301 489-1 $489-3$

English	Hereby, Omron, declares that this V680-CH(XX-X) is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/ EC.
Finnish	Omron vakuuttaa täten että V680-CH(XX-X) tyyppinen laite on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.
Dutch	Hierbij verklaart Omron dat het toestel V680-CH(XX-X) in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van richtlijh 1999/5/EG.
French	Par la présente Omron déclare que l'appareil V680-CH(XX-X) est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.
Swedish	Härmed intygar Omron att denna V680-CH(XX-X) stär 1 överensstämmelse med de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.
Danish	Undertegnede Omron erklærer herved, at følgende udstyr V680-CH(XX-X) overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF.
German	Hiermit erklärt Omron, dass sich dieser V680-CH(XX-X) in Übereinstimmung mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften der Richtlinie 1999/5/EG befindet. (BMWi)
Greek	ME THN ПAPO Σ A Omron $\Delta H \Lambda \Omega N E I \quad$ OT IV680-HA63 (-X) $\Sigma \Upsilon M M O P \Phi \Omega N E T A I ~ \Pi P O \Sigma$ TI Σ 1999/5/E K
Italian	Con la presente Omron dichiara che questo $\mathrm{V} 680-\mathrm{CH}(\mathrm{XX}-\mathrm{X})$ é conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.
Spanish	Por medio de la presente Omron declara que el V680-CH(XX-X) cumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.
Portuguese	Omron declara queeste V680-CH(XX-X) estả conforme com os tequisitos essenciais e outras disposições da Directiva 1999/5/CE.

3．Japan（Radio Law）

	Hand－held Reader Writer
Equipment using high frequencies：Inductive Reading／Writing Communications Equipment Conforming standard：Inductive Reading／Writing Communications Equipment；Standard：ARIB STD－T82 No．EC－07045 V680－CH1D－PSI Equipment using high frequencies：Inductive Reading／Writing Communications Equipment Conforming standard：Inductive Reading／Writing Communications Equipment；Standard：ARIB STD－T82 No．EC－07043 Equipment using high frequencies：Inductive Reading／Writing Communications V680－CHUD Equipment Conforming standard：Inductive Reading／Writing Communications V680－CH1D Equipment；Standard：ARIB STD－T82 No．EC－07044	

4．Canada

	Hand－held Reader Writer
IC ID：850L－V680CHXD	V680－CH1D－PSI
	V680－CHUD

This device complies with RSS－Gen of IC Rules．
Operation is subject to the following two conditions：（1）this device may not cause harmful interference，and （2）this device must accept any interference received，including interference that may cause undesired operation．

5．China

	Hand－held Reader Writer
CMII ID：2008DJ0886	V680－CH1D－PSI
CMII ID：2008DJ0887	V680－CHUD
CMII ID：2008DJ0888	V680－CH1D

1．本产品的使用方法等请参见产品说明书。本产品的技术参数如下：
■使用频率为： $13.553-13.567 \mathrm{MHz}$
■所发射的电场强度在距设备 10 米处不得超过 $42 \mathrm{~dB} \mu \mathrm{~A} / \mathrm{m}$（采用准峰值检波）；
－频率容限：$\leq 100 \times 10-6$
■杂散辐射等其他技术指标请参照2005／423号文件
2．使用者不得擅自更改发射频率，加大发射功率（包括额外加装射频功率放大器），不得擅自外接天线或改用其它发射天线；
3．使用时应注意不得对各种合法的无线电通信业务产生有害干扰；一旦发现有干扰现象时，应立即停止使用，并采取措施消除干扰后方可继续使用；
4．本产品为微功率无线电设备，能够承受各种无线电业务的干扰或工业，科学及医疗应用设备的辐射干扰；
5．本产品不得在飞机和机场附近使用。

6．Korea

	Hand－held Reader Writer
OMR－V680－CH1D－PSI	V680－CH1D－PSI
OMR－V680－CHUD	V680－CHUD
OMR－V680－CH1D	V680－CH1D

급 기기（가정용 정보통신기기）
이 기기는 가정용으로 전자파적합등록을 한 기기로서 주거지역에서는 물론 모든 지역에서 사용할 수 있습니다．

7．Taiwan

	Hand－held Reader Writer
CCAB08LP239BT7	V680－CH1D－PSI
CCAB08LP239AT5	V680－CHUD
CCAB08LP2390T3	V680－CH1D

低功率電波輻射性電機管理辦法

第十二條
經型式認證合格之低功率射頻電機，非經許可，公司，商號或使用者均不得擅自變更頻率，加大功率或變更原設計之特性及功能。
第十四條
低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。
前項合法通信，指依電信法規定作業之無線電通信。
低功率射頻電機須忍受合法通信或工業，科學及醫療用電波輻射性電機設備之干擾。

8．Singapore

	Hand－held Reader Writer
N0132－08	V680－CH1D－PSI
N0130－08	V680－CHUD
N0131－08	V680－CH1D

9．Malaysia

	Hand－held Reader Writer
B00456	V680－CH1D－PSI
B00209	V680－CHUD
B00378	V680－CH1D

For application in Malaysia，a label must be attached to the side of the V680－CH $\square \square$ locally．Contact your OMRON representative．
10.Philippines

	Hand-held Reader Writer
ESD-0903983C	V680-CH1D-PSI
ESD-0903982C	V680-CHUD
ESD-0903981C	V680-CH1D

11.Mexico

	Hand-held Reader Writer
COFETEL: RCPOMV608-0843-A2	V680-CH1D-PSI
COFETEL: RCPOMV608-0843-A1	V680-CHUD
COFETEL: RCPOMV608-0843	V680-CH1D

Este equipo opera a titulo secundario, consecuentemente, debe aceptar interferencias perjudiciales incluyendo equipos de la misma clase y puede no causar interferencias a sistemas operando a titulo primario.

Precautions for Safe Use

Observe the following precautions to ensure safe use of the Product.

1. Do not use the Product in environments with flammable, explosive, or corrosive gasses.
2. Do not attempt to disassemble, repair, or modify the Product.
3. The USB driver must be installed in the personal computer before connecting the V680-CHUD to a personal computer.
4. Do not subject cables to excessive loads.
5. Observe all warnings and precautions given in the body of this manual.
6. Discontinue usage and turn OFF the power supply immediately if you notice any unusual odors, if the Product is abnormally hot, or if the Product starts smoking.
7. Dispose of the Product as industrial waste.

Precautions for Correct Use

Always observe the following precautions to prevent operation failures, malfunctions, and adverse effects on performance and equipment.

1. Installation and Storage Environment

Do not use or store the Product in the following locations.

- Locations exposed to corrosive gases, dust, metallic powder, or salts
- Locations not within the specified operating temperature range
- Locations subject to rapid changes in temperature or condensation
- Locations not within the specified operating humidity range
- Locations subject to direct vibration or shock outside the specified ranges
- Locations subject to spray of water, oil, or chemicals

2. Environment

- This Product uses a frequency band of 13.56 MHz to communicate with ID Tags. Some motors, inverters, switching power supplies, and other devices generate electrical noise that will affect communications with the ID Tags. If any of these devices are located in the vicinity of the Product, they may affect communications with ID Tags, and may possibly damage the ID Tags. Prior to using the Product in the vicinity of any of these devices, perform a test to determine whether the Product can be used under the resulting influence.
- Observe the following precautions to minimize the effects of normal noise.
(1) Ground all metal objects in the vicinity of the Product to 100Ω or less.
(2) Do not use the Product near high-voltage or high-current lines.
- Connectors are not waterproof. Do not use the Product where mists are present.
- Do not use chemicals that would affect the materials used in the product.
- Be sure the USB connector is properly inserted when using the USB port on the V680-CHUD.
- Always use the specified AC Adaptor (V600-A22) when using the V680-CH1D.

3. Host Communications

Always confirm that the Product has been started before attempting to communicate with it from the host. Also, when the Product is started, unstable signals may be output from the host interface. When starting operation, clear the reception buffers in the host or take other suitable countermeasures.

4. Cleaning

- Do not clean the product with thinners, benzene, or other organic solvents. These will dissolve the resin parts and coating on the case.

How to Read this Manual

Meanings of Symbols

Indicates particularly important points related to a function, including precautions and application advice.

Indicates page numbers containing relevant information.Indicates reference to helpful information and explanations for difficult terminology.

Table of Contents

Introduction

READ AND UNDERSTAND THIS DOCUMENT 2
Safety Precautions 4
Regulations and Standards 5
Precautions for Safe Use 9
Precautions for Correct Use 10
How to Read this Manual 11
Section 1 Product Overview 15
Features 16
Using Heat-resistive Tags (V680-D1KP58HTN and V680-D1KP58HT) 18
Names and Functions of Components 23
System Configuration 26
Operation Flowchart 29
Section 2 Communications Preparations 33
V680-CHUD Communications Preparations 34
V680-CH1D Communications Preparations 43
V680-CH1D-PSI Communications Preparations 46
Setting the Hand-held Reader Writer 47
Communications Test 51
Section 3 Commands 53
Communicating with ID Tags 54
V600 and V680 Command Comparison 55
V680 Commands 57
V600 Commands 81
Section 4 Functions 117
Hand-held Reader Writer Functions 118
Write Protection Function 119
ID Tag Service Life Detection 121
Memory Check Function in ID Tag 123
ID Tag Memory Error Correction 124
Section 5 Troubleshooting 127
Error Tables 128
Troubleshooting Flowchart 129
Section 6 Appendices 131
Specifications and Dimensions 132
ID Tag Memory Map 144
ID Tag Memory Capacities and Memory Types (V680 Series) 145
List of ASCII Characters 146
Degree of Protection 147
Revision History 150

Section 1 Product Overview

Using Heat-resistive Tags (V680-D1KP58HTN and V680-D1KP58HT)18
Names and Functions of Components 23
System Configuration 26
Operation Flowchart 29

Features

The V680-series Hand-held Reader Writer incorporates a V680-series Antenna and Controller into a compact design. Data can be read from or written to the ID Tag simply by approaching or touching the ID Tag with the Hand-held Reader Writer.

Personal computer

7527S-series Hand-held Terminal manufactured by Psion Teklogix Inc. Hand-held Terminal Recommended for the V680-CH1D-PSI: V680-A-7525S-G2- $\square \square$

and-held Reader Writers

θ

D Tags

V680-CHUD

This Hand-held Reader Writer provides a USB connector that conforms to the USB 1.1 standard. Connecting the Hand-held Reader Writer to a personal computer or Hand-held Terminal gives it superior portability, and operability.

V680-CH1D

A built-in RS-232C interface allows this Hand-held Reader Writer to be connected to a personal computer or programmable controller.

V680-CH1D-PSI

A built-in RS-232C interface allows this Hand-held Reader Writer to be connected to a Hand-held Terminal, giving it superior portability, and operability.

\square Differences between Version 1.0 and 1.1

The following functions have been added to version 1.1 in comparison to version 1.0. Functions are upwardly compatible, so version 1.0 can be replaced with version 1.1.

- CA1D Mode Setting Added for Tag Memory

Setting the Tag memory setting to CA1D Mode enables reading and writing Heat-resistant Tags that were written by the V680-CA1D/-CA2D.

- Parameter Added to PARAMETER SET (SP) Command

A parameter to set the Tag memory setting was added to the PARAMETER SET (SP) command.

"
The Tag memory setting is made in the Hand-held Reader Writer. A different memory map may be used when reading or writing Heat-resistant Tags that were written by the V680-CA1D/-CA2D from a Reader/Writer that is manufactured by a恠 p .21

Checking the Version

- Version 1.0

- Version 1.1

OMROn [DD
V680-CH1D
MADE IN JAPAN

Using Heat-resistive Tags (V680-D1KP58HTN and V680-D1KP58HT)

This section provides information for using Heat-resistive Tags (V680-D1KP58HTN or V680-D1KP58HT). If you are not using a Heat-resistive Tag, set the Tag memory setting to Standard Mode.

Precautions for Saving Data at High Temperatures

If you are using a Heat-resistive Tag, write the data again after saving the data at a high temperature even if it is not necessary to change the data. A "high temperature" is one between $110^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$.

Using the V680-CA1D/-CA2D

If you are using Heat-resistive Tags (V680-D1KP58HTN or V680-D1KP58HT) and also using the V680-CA1D/-CA2D, set the Tag memory setting of the V680-CH \square D (version 1.1 or newer) to CA1D Mode.

If you are not using the V680-CA1D/-CA2D, the Tag memory setting does not need to be changed
Refer to information in Names and Functions of Components.

CHECK!
Combining the V680-CA1D/-CA2D with Other Models
When using other models of Controller with the V680-CA1D/-CA2D, make sure that the version allows setting the Tag memory setting to CA1D Mode.

To use the V680-CA5D01-V2/-CA5D02-V2, it must be version 2.3 or newer.
To use the $\mathrm{V} 680-\mathrm{CH} \square \mathrm{D}$, it must be version 1.1 or newer.
To use the CS/CJ1W-V680C1 \square, it must be version 1.2 or newer.

Refer to Checking the Version for information on product versions.

三p. 17

Introduction

The address maps in the ID Tags for the V680-D1KP $\square \square$ (except for the V680-D1KP58HT) are reversed between the V680-CA1D/-CA2D ID Controllers and V680-CH \square D Hand-held Reader Writer (with Tag memory setting set to CA1D Mode for version 1.1 or newer), and the V680-CH $\square \mathrm{D}$ (version 1.0) and V680-CH $\square \mathrm{D}$ (with Tag memory setting set to Standard Mode for version 1.1 or newer) Handheld Reader Writers. Therefore, when you use ID Tags with a V680-CA1D/-CA2D ID Controller, always set the Tag memory setting to CA1D Mode in any other models of ID Controller or Hand-held Reader Writers that are used for the same ID Tags.

- Applicable ID Tags

Only the V680-D1KP $\square \square$ ID Tags can be used when the Tag memory setting is set to CA1D Mode. V680-D $\square K F \square \square$ ID Tags cannot be used.

- ID Tags That Can Be Used

Models
V680-D1KP58HT
V680-D1KP58HTN
V680-D1KP52MT
V680-D1KP53M
V680-D1KP66T
V680-D1KP66MT

- ID Tags That Cannot Be Used

Models
V680-D2KF52M
V680-D2KF67
V680-D2KF67M
V680-D8KF67
V680-D8KF67M
V680-D8KF68
V680-D32KF68

- CA1D Mode Setting for Tag Memory and Write Protection

When setting the Tag memory setting to CA1D Mode, always disable write protection.

Setting the Tag Memory Setting to CA1D Mode

When changing an existing system to use the V680-CA1D/-CA2D, there are restrictions in the command system and write protection function.
The following settings are required if the Tag memory setting is set to CA1D Mode.
1.Process code J in PARAMETER SET (SP) command: Set the command system setting to 0 to set the command system to V600 commands.
2. Process code H in PARAMETER SET (SP) command: Set the write protection function setting to 1 to disable write protection.
3.Process code L in PARAMETER SET (SP) command: Set the Tag memory setting to 1 to set CA1D Mode.

Standard Mode is the default Tag memory setting.

For details on the PARAMETER SET (SP) command, refer to PARAMETER SET (SP) under V680 Commands or V600 Commands in Section 3 Commands.
p.70, p. 106

Operation When Tag Memory Setting Is Set to Standard Mode

When data that was written to a V680-D1KP58HTN ID Tag with the V680-CA1D/-CA2D ID Controller is read from a V680-CH \square D Hand-held Reader Writer, the data from addresses that are reversed in oneblock (eight-byte) units is read.
If you are going to use a V680-CH $\square \mathrm{D}$ Reader Writer in the same line as a V680-CA1D/-CA2D ID Controller, use a V680-CH \square D Reader Writer with version 1.1 or newer and set the Tag memory setting to CA1D Mode.

Operation When Tag Memory Setting Is Set to CA1D Mode

If the Tag memory setting for the V680-CH $\square \mathrm{D}$ (version 1.1 or newer) is set to CA1D Mode, data is read from or written to addresses that are reversed in block units for the V680-D1KP $\square \square$ (except for the V680-D1KP58HT) in the same way as for the V680-CA1D/-CA2D. Therefore, data can be read from the same addresses as those to which data was written by the V680-CA1D/-CA2D.

Canceling CA1D Mode

To cancel CA1D Mode, use the PARAMETER SET (SP) command to set the Tag memory setting to Standard Mode.
Process code L: Set the Tag memory setting to Standard Mode. For the V600 protocol, set the tag memory setting to 0 . For the V680 protocol, set the tag memory setting to 00 .

For details on the PARAMETER SET (SP) command, refer to PARAMETER SET (SP) under V680 Commands or V600 Commands in Section 3 Commands.
p.70, p. 106

When CA1D Mode is canceled, the address mapping with the ID Tags will be different from the ones written in CA1D Mode. This may cause unexpected addresses to be read or written. When canceling CA1D Mode, initialize the data in the ID Tags before using them.

Names and Functions of Components

V680-CHUD

■ Operation Indicator (LED)

Display	Meaning
	A command has been received from the host device.
	Communications with the ID Tag have completed normally.
Flashing green	When the power is turned ON, after initialization of the Hand-held Reader Writer is completed.
	Communications with the ID Tag are in progress.
Lit red	A communications error with the ID Tag has occurred.
	A CPU error has occurred.
Flashing red	An ID Tag non-existent error has occurred.
	A communications error with the host device has occurred.

After the operation indicator is lit or flashing for a certain time, it will turn OFF.

Activate Switch

When button commands or commands with button communications specifications (button trigger or button auto) are used and the activate switch is pressed, communications with the ID Tag will start. (For details on button communications specifications, refer to Section 3 Commands.)

■ Interface Connector

This is a USB interface with an A-series plug based on USB 1.1.

Antenna

To communicate with the ID Tag, move the antenna close to it.

V680-CH1D

Operation Indicator (LED)

Display	Meaning
Lit green	A command has been received from the host device.
	Communications with the ID Tag have completed normally.
Flashing green	-When the power is turned ON, after initialization of the Hand-held Reader Writer is completed -When the power is turned ON and the reset button is pressed for two seconds or more (initialization stand-by mode).
	Communications with the ID Tag are in progress.
	A communications error with the ID Tag has occurred.
Lit red	A CPU error has occurred.
Flashing red	An ID Tag non-existent error has occurred.
	A communications error with the host device has occurred.

Activate Switch

When button commands or commands with button communications specifications (button trigger or button auto) are used and the activate switch is pressed, communications with the ID Tag will start. (For details on button communications specifications, refer to Section 3 Commands.) If the activate switch is pressed with the Hand-held Reader Writer in the initialization stand-by mode (with the green indicator flashing), the function settings will be initialized.

Reset Button

Press this button for two seconds or more when the power is first turned ON to put the Hand-held Reader Writer into the initialization stand-by mode.

■ AC Adaptor Connection Jack

This is a connection jack for the V600-A22 AC Adaptor.

Serial Interface Connector

This is a serial interface with an RS-232C-compliant D-Sub 9-pin connector.

Antenna

To communicate with the ID Tag, move the antenna closer to it.
V680-CH1D-PSI

■ Operation Indicator (LED)

Display	Meaning
	A command has been received from the host device.
	Communications with the ID Tag have completed normally.
Flashing green	-When the power is turned ON, after initialization of the Hand-held Reader Writer is completed. -When the power is turned ON and the reset button is pressed for two seconds or more (initialization stand-by mode).
	Communications with the ID Tag are in progress.
$\underbrace{}_{\text {Lit red }}$	A communications error with the ID Tag has occurred.
	A CPU error has occurred.
Flashing red	An ID Tag non-existent error has occurred.
	A communications error with the host device has occurred.

After the operation indicator is lit or flashing for a certain time, it will turn OFF.

Activate Switch

When button commands or commands with button communications specifications (button trigger or button auto) are used and the activate switch is pressed, communications with the ID Tag will start. (For details on button communications specifications, refer to Section 3 Commands.) If the activate switch is pressed with the Hand-held Reader Writer in the initialization stand-by mode (with the green indicator flashing), the function settings will be initialized.

Reset Button

Press this button for two seconds or more when the power is first turned ON to put the Hand-held Reader Writer into the initialization stand-by mode.

Serial Interface Connector

This is a serial interface with an RS-232C-compliant D-Sub 9-pin connector.

Antenna

To communicate with the ID Tag, move the antenna closer to it.

System Configuration

V680-CHUD

The V680-CHUD Hand-held Reader Writer can communicate with host devices that have a USB interface, such as personal computers.

Host Devices

ID Tags

The V680-CHUD Hand-held Reader Writer can be used with any ID Tag in the V680 Series.

For details on Hand-held Reader Writer and ID Tag models, refer to Section 6 Appendices.

V680-CH1D

A built-in RS-232C serial interface in the V680-CH1D Hand-held Reader Writer allows communication with personal computers and programmable controllers that are equipped with an RS-232C interface.

Host Devices

Hand-held Reader Writer

Dags

The V680-CH1D Hand-held Reader Writer can be used with any ID Tag in the V680 Series.

For details on Hand-held Reader Writer and ID Tag models, refer to Section 6 Appendices.
風
p.132, p. 145

V680-CH1D-PSI

A built-in RS-232C serial interface in the V680-CH1D-PSI Hand-held Reader Writer allows communications with personal computers and programmable controllers that are equipped with an RS-232C interface

Host Devices

ID Tags

The V680-CH1D-PSI Hand-held Reader Writer can be used with any ID Tag in the V680 Series.

For details on Hand-held Reader Writer and ID Tag models, refer to Section 6 Appendices.
乩
p.132, p. 145

Operation Flowchart

V680-CHUD

Section 1

Product Overview

V680－CH1D

Set the communications parameters between the host device and Hand－held Reader Writer． p． 47

Perform the communications test between the host device and Hand－held Reader Writer．

Perform the communications test between the ID Tag and Hand－held Reader Writer．
p． 52

Check the ambient environment．
p． 132

Operate the system using real commands．
宔
p． 53

V680-CH1D-PSI

Connect the V680-CH1D-PSI to the host device.
p. 46

Set the communications parameters between the host device and Hand-held Reader Writer.
p. 47

Section 2 Communications Preparations

V680-CHUD Communications Preparations 34
V680-CH1D Communications Preparations 43
V680-CH1D-PSI Communications Preparations 46
Setting the Hand-held Reader Writer 47
Communications Test 51

V680-CHUD Communications Preparations

Connections

Connecting the Cable

1. Connect the cable connector to the USB connector on the host device, making sure that the connector is oriented correctly and not inserted at an angle.

Removing the Cable

1. Remove the cable.

Close the software application at the host device and then pull out the connector in a straight line, not at an angle.

If the connector is removed while the software is running at the host device, operation may stop due to a software malfunction error. Restart the software if operation becomes impossible. CHECK!

Installing the USB Driver (V680-CHUD)

When connecting the Hand-held Reader Writer to the host device for the first time, the USB driver must be installed at the host device.

■ Downloading the USB Driver

Download the USB Driver for the V680-CHUD from the web site.
For details, ask your OMRON sales representative.

- Installing the USB Driver

The V680-CHUD supports the Windows XP operating system. Install the driver in the host personal computer using the following procedure.
Operation on other operating systems is not supported.

1. Turn ON the power to the personal computer and start Windows $X P$.
2.

Connect the Hand-held Reader Writer to the personal computer.

For details on connection methods, refer to Connections.

снеСК!
四p. 34

Wait for the following window to be displayed.
3.

When the following dialog box is displayed, select the Install from a list or specific location (Advanced) Option and click the Next Button.

4. Click the Browse Button when the Found New Hardware Wizard Dialog Box appears, select the folder in which the downloaded file V680-CHUD_100.inf was saved, and click the Next button.

5. Click the Continue Anyway Button.
Hardware Installation
The software you are installing for this hardware:
OMRON RFID USB COM
has not passed Windows Logo testing to verify its compatibility
with Windows XP. (Tell me why this testing is important.]

Continuing your installation of this software may impair
or destabilize the correct operation of your system
either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
passed windows Logo testing.

Continue Anyway STOP Installation
6. The USB Driver installation will begin.

7. When the following window is displayed, installation has been completed.

8. Click the Finish Button.

Section 2

Communications Preparations

- Checking Installation

Check that the driver is correctly installed.

1. Connect the Hand-held Reader Writer to the personal computer.
2. On the Start Menu, select Control Panel - System.
3. Click the Device Manager Button in the Hardware Tab Page.

4. Select Ports (COM \& LPT), and check that OMRON RFID USB COM is displayed.

The driver is correctly installed if this port is displayed.

Communications with the Hand-held Reader Writer can be performed with the COM number displayed in parentheses after OMRON RFID USB COM.

- Windows Vista

1. Turn ON the power to the personal computer and start Windows Vista.
2. Connect the Hand-held Reader Writer to the computer via USB.

For details on connection methods, refer to Connections.

CHECK!
追p.34

Wait for the following window to be displayed.
3. When the following window is displayed, select Locate and install driver software (recommended) Button.

Windows needs to install driver software for your
W680-CHUD
Wew Hardware
Locate and install driver software (recommended)
Windows will guide you through the process of installing driver software
for your device.
\rightarrow Ask me again later
Windows will ask again the next time you plug in your device or log on.
Don't show this message again for this device
Your device will not function until you install driver software.
Cancel

4. If the User Account Control Dialog Box is displayed, click the Continue Button.
5. If a dialog box appears for searching for software online, select the Don't search online Option. If this dialog box is not displayed, go to the next step.
6. When the following window is displayed, select I don't have the disc. Show me other options. Button.

Section 2

7. When the following window is displayed, select Browse my computer for driver software (advanced) Button.

8. Click the Browse Button, and select the folder in which the downloaded file V680_CHUD_200.inf is saved. Then click the Next Button.

9. When the following window is displayed, select Install this driver software anyway Button.
```
(8) Windows Security 
    Windows can't verify the publisher of this driver software
        Don't install this driver software
    You should check your manufacturer's website for updated driver software
    for your device.
    - Install this driver software anyway
    Only install driver software obtained from your manufacturer's website or
    disc. Unsigned software from other sources may harm your computer or steal
    information.
* See details
```

When the following window is displayed, installation is completed.

The software for this device has been successfully installed
Windows has finished installing the driver software for this device:
OMRON RFID USB COM

10. Click the Close Button.
," The displays that actually appear depend on your computer environment.

CHECK!

Section 2

－Checking Installation
Check that the driver is correctly installed．

1．Connect the Hand－held Reader Writer to the personal computer．
2．On the Start Menu，select Control Panel－Performance and Maintenance．
3．Click the System Icon．
4．Click the Device Manager Button on the Hardware Tab Page．
5．Select Ports（COM \＆LPT），and check that OMRON RFID USB COM is displayed． The driver is correctly installed if this port is displayed．

```
A Device Manager
Eile Action View Help
* 屋 目 目|谅
    (1) Computer
    T.OD Disk drives
    7.4.Esplay adapters
    ## DVD/CD-ROM drives
    田 Floppy disk drives
    @) E- Floppy drive controllers
    (1).0.0 Human Interface Devices
    #-C.CIDE ATA/ATAPI controllers
    #- Keyboards
    I) Mice and other pointing devices
    1Monitors
    Monitors
    18) Other devices
    P
        Communications Port (COM1)
        Communications Port (COM1)
        Communications Port (COM2)
        ECP Printer Port (LPT1)
        OMRON RFID USB COM (COM3)
    \squarePr
    < Storage controllers
    L. System devices
    U Universal Serial Bus controllers
```

Communications with the Hand－held Reader Writer can be performed with the COM number displayed in parentheses after OMRON RFID USB COM．

V680-CH1D Communications Preparations

Pin Arrangement of the Host Device Interface Connector

V680-CH1D

Connector from Mating Side

Pin No.	Signal (See note.)	Code (See note.)	Signal direction
1	---		---
2	Receive data	RD	Hand-held Reader Writer to host device
3	Send data	SD	Host device to Hand-held Reader Writer
4	---	---	---
5	Signal ground	SG	---
6	(Reserved)	---	Loops inside connector
7	Request send	RS	---
8	Enable send	CS	L--
9	---		

Note: The names of signals at the host device are abbreviated with codes.
Note: For conversion to a 25-pin connector, the SGC-X9P/25P-2 manufactured by Sunhayato, or an equivalent, is recommended.

Connection with the Host Device

Use the following procedure to connect the V680-CH1D to the host device.

1. Connect the V680-CH1D to the RS-232C interface of the host device.

- When connecting to an IBM PC/AT or compatible:

- When connecting to a PC9801-series computer (D-Sub 25-pin connector):

To convert from a 9-pin connector to a 25-pin connector, use an SGC-X9P25P-2 conversion connector manufactured by Sunhayato, or an equivalent product.

2. Connect the V600-A22 AC Adaptor to the V680-CH1D.

3. Plug the V600-A22 AC Adaptor into a 100- to 120-VAC power outlet.

- Do not use any AC adaptor other than the specified one (V600-A22).
- Using any AC adaptor other than the specified one may cause a malfunction, damage, or fire in the V600-CH1D.
- Some host devices require a conversion connector.

снеск!

- When connecting to a CQM1, CJ1, CS1, etc.

Prepare a connection cable as shown in the connection examples below.

Note: Because both the V680-CH1D interface connector and the interface connector of the CQM1, CJ1, and CS1 are sockets, a conversion connector is necessary to connect them. Also, the pin arrangement of the CQM1, CJ1, and CS1 interface connector is different from the RS-232C pin arrangement of a personal computer.

V680-CH1D
CQM1/CJ1/CS1

Pin No.	Signal	Pin No.	Signal
1	---	1	---
2	RD	2	SD
3	SD	3	RD
4	---	4	RS
5	SG	5	CS
6	---	6	--
7	RS	7	---
8	CS	8	---
9	---	9	SG

V680-CH1D-PSI Communications Preparations

Pin Arrangement of the Host Device Interface Connector

V680-CH1D-PSI

Pin No.	Signal (See note.)	Code (See note.)	Signal direction
1	---		---
2	Receive data	RD	Hand-held Reader Writer to host device
3	Send data	SD	Host device to Hand-held Reader Writer
4	---	---	---
5	Signal ground	SG	---
6	Reserved	---	---
7	Request send	RS	Loops inside connector
8	Enable send	CS	Host device to Hand-held Reader Writer
9	5 VDC	---	Hyn

Note: The names of signals at the host device are abbreviated with codes.

Connection with the Host Device
Use the following procedure to connect the V680-CH1D-PSI to the host device.

1. Connect the V680-CH1D-PSI to the RS-232C interface of the host device.

Setting the Hand-held Reader Writer

Settings

The following settings are used to operate the Hand-held Reader Writer.

- Serial communications parameters (baud rate, transmission code, parity check, stop bits)
- Basic function settings (Auto Command OFF)

These settings can be changed by sending a setting command from the host device. To operate the Hand-held Reader Writer with the new setting, the power must be turned OFF then ON again, or the ABORT command must be used.

Serial Communications Parameters

The following settings are related to serial communications. Use the COMMUNICATIONS CONDITIONS SETTING (TR) command.

Item	
Baud rate (bps)	$2,400,4,800,9,600^{\star}, 19,200,38,400$
Transmission code	7 -unit ASCII 7^{*} or 8-unit JIS 8
Parity check	Even parity*/odd parity/none
Stop bits	$2^{\star} / 1$

Note: Items marked by an asterisk (*) are set as the default when shipped from the factory.

Basic Function Settings

The Auto Command OFF function can be set. Use the BASIC FUNCTIONS SETTING (FN) command.

Item		Contents
Auto Command OFF function	Yes (1 minute) ${ }^{\star}$, No	

Note: Items marked by an asterisk (*) are set as the default when shipped from the factory.

Reading the Settings

Use the SET INFORMATION READ (UL) command to read the settings of the Hand-held Reader Writer. The information read by the SET INFORMATION READ command is set in the backup memory of the Hand-held Reader Writer. For this reason, care must be taken when the power is first turned ON after the settings have been changed because the operational settings of the Hand-held Reader Writer will be different.

Setting the Operating Parameters

To optimize Hand-held Reader Writer performance and reliability, operating parameters can be set to match the application. The following parameters can be set: the inter-character monitoring time, response delay time, auto command cancel time, write protection setting, and protocol.
Usually there will be no problem if the default settings are used, but the system can be optimized by setting following parameters.
These parameters are stored in the internal memory of the Hand-held Reader Writer and are saved even if the power is turned OFF. When the internal settings are changed with the PARAMETER SET command (SP), it is not necessary to reset the Hand-held Reader Writer. The changes will be effective immediately after the PARAMETER SET command is executed.

The PARAMETER SET command is also used to read the parameter settings. For details on the PARAMETER SET command, refer to PARAMETER SET (SP) in Section 3.

$$
L \equiv \mathrm{~L} .76, \mathrm{p} .114
$$

Inter-character Monitoring Time

The Hand-held Reader Writer recognizes a command when it receives the end code of a command string that is sent from the host device. However, if for some reason the command is only partially received, the Hand-held Reader Writer will monitor for a fixed period of time after the last character in the command string is received. If the complete command string is not received after the fixed period of time has expired, a format error (end code: 14) will be returned.

Response Delay Time

The start of returning a response can be changed by setting the response delay time.

Auto Command Cancel Time

The auto command cancel time is used to set the amount of time from after an auto command is sent until the command processing will be aborted．
After waiting for the tag for a fixed period of time，an＂ID Tag non－existent＂error（error code：72）will be returned to the host device．

Write Protection Enable Setting

The write protection enable setting can be used to enable or disable write protection．
00 ：Write protection function disabled
01：Write protection function enabled default value
or details on write protection settings，refer to Write Protection Function in Section 4

The protocol switch is used to set whether the Hand－held Reader Writer will use the V680 command format or the V600 command format．
0：V600 commands（default value）
1：V680 commands

For details，refer to Section 3 Commands．

СНЕСК！差p． 53

－Tag Memory Setting

The CA1D Mode in the Tag memory setting is used only when using the V680－CA1D／－CA2D． If you are using the V680－CA1D／－CA2D，set the Tag memory setting to CA1D Mode．
If you are not using the V680－CA1D／－CA2D，set the Tag memory setting to Standard Mode．
0 ：Standard Mode（default value）
1：CA1D Mode

Refer to Using Heat－resistive Tags（V680－D1KP58HTN and V680－D1KP58HT）in Section 1 Product Overview for infor－ mation on using Using Heat－resistive Tags（V680－D1KP58HTN or V680－D1KP58HT）．

Use the VERSION READ（VS）command to read the product version．For details on the VERSION READ（VS）com－ mand，refer to VERSION READ（VS）under V680 Commands or V600 Commands in Section 3 Commands．

三p．78，p． 109

Initializing the Settings

A setting command is used to set the Hand-held Reader Writer but if the communications parameters are not known or if the setting contents are damaged, it is possible that communications will no longer be possible with the host device. If this occurs, press both the reset button and the activate switch when turning ON the power. This will return all settings to the defaults set when the Hand-held Reader Writer was shipped from the factory, allowing communications with the host device again.

Reset Procedure

1. Turn ON the power while pressing the reset button.
2. Keep the reset button depressed for two seconds or more. The green operation indicator will start flashing.
3. With the green operation indicator flashing, remove your finger from the reset button and press the activate switch.
4. When the activate switch is pressed, the operation indicator will stop flashing green. This indicates that all of the settings have been initialized.
Note: If the activate switch is not pressed within 30 seconds from the time that the operation indicator starts flashing green, the settings will not be initialized.

The V680-CHUD does not have a reset button. To reset the V680-CHUD, shut down the software on the host device, and disconnect and reconnect the connector.

CHECK!

Communications Test

Test Run Procedure

Communications Test between Host Device and Hand-held Reader Writer

Use the test command to test communications between the Hand-held Reader Writer and host device. Before performing communications with the ID Tag, check the Hand-held Reader Writer connections and communications.

1. Send the test command from the host device.

For detail on the test command, refer to TEST (TS).
気p.77,p. 108
2. If communications is normal, the Hand-held Reader Writer will return the received data.

If a response is not returned, refer to Troubleshooting.

CHECK!
趁 ${ }^{1.127}$

Communications Test between ID Tags and Hand-held Reader Writer

Use actual commands to test communications between the ID Tags and the Hand-held Reader Writer.

1. Send the READ command (RD) with an SA communications specification from the host device.

The Hand-held Reader Writer will communicate with the ID Tag and the operation indicator will flash green.
2.

Move the antenna of the Hand-held Reader Writer close to the ID Tag.

[^0]
Section 3 Commands

Communicating with ID Tags 54
V600 and V680 Command Comparison 55
V680 Commands 57
V600 Commands 81

Communicating with ID Tags

Specifying Data Code

Whether the read or write data is treated as an ASCII (or JIS 8) or hexadecimal is specified in each command.

ASCII (JIS 8 Code)

- One character of ASCII or JIS 8 code data occupies 1 byte (1 address) of the ID Tag memory.
- Examples for Specifying ASCII Text

V600 Commands

- ID Tag

V680 Commands ${ }^{\text {setting }}$

Hexadecimal

- One character is treated as a hexadecimal number. Therefore, only numerals 0 through 9 and A to F can be accepted.
- Two characters of data occupy 1 byte (1 address) of the ID Tag memory. Therefore, specify data in 2-character units (in even numbers) when using a WRITE command. If an odd number of
- ID Tag
 characters is specified by mistake, an error will occur.

- Examples for Specifying Hexadecimal

V600 Commands

V680 Commands

V600 and V680 Command Comparison

The V680-series Hand-held Reader Writer can use commands in either the V600 command format or the V680 command format. By using V600 commands, production lines that previously used a V600-series Reader Writer can use the same application with the V680-series Hand-held Reader Writer. New functionality can be used by using V680 commands.
The PARAMETER SET (SP) command is used to switch between the two command formats. V680 and V600 commands are handled as shown in the following tables.

Communications Commands

V680 commands				V600 commands		
Command name	$\begin{aligned} & \text { Command } \\ & \text { code } \end{aligned}$	Communications specification	Data specification	Command name	$\begin{aligned} & \text { Command } \\ & \text { code } \end{aligned}$	Data specification
READ	RD	ST	A/H	READ	RD	A/H
		SA	A/H	AUTO READ	AR	A/H
		BT	A/H	BUTTON READ	BR	A/H
		BA	A/H	BUTTON AUTO READ	UR	A/H
WRITE	WT	ST	A/H	WRITE	WT	A/H
		SA	A/H	AUTO WRITE	AW	A/H
		BT	A/H	BUTTON WRITE	BW	A/H
		BA	A/H	BUTTON AUTO WRITE	UW	A/H
DATA FILL	DF	ST	A/H	DATA FILL	FL	A/H
		SA	A/H	AUTO DATA FILL	AF	A/H
DATA CHECK	MD	ST	C/K	DATA CHECK	MD	C/K
OVERWRITE COUNT CONTROL	MD	ST	S/L	OVERWRITE COUNT CONTROL	MD	S
CALCULATION WRITE	---	---	---	CALCULATION WRITE	CW	A/S
ID CODE READ	ID	ST	H	ID CODE READ	ID	H
READ WITH ERROR CORRECTION	QR	ST	A/H	---	---	---
WRITE WITH ERROR CORRECTION	QW	ST	A/H	---	---	---

Communications Subcommands

V680 commands		V600 commands			
Command name	Command code	Data specifi- cation	Command name	Command code	Data specifi- cation
COMMAND PROCESSING TERMINATE	AA	---	COMMAND PROCESSING TERMINATE	AA	---
ABORT (reset)	XZ	---	ABORT (reset)	XZ	---

Controller Control Commands

V680 commands	V600 commands		
Command name	Command code	Command name	Command code
COMMUNICATIONS CONDITIONS SETTING	TR	COMMUNICATIONS CONDITIONS SETTING	TR
BASIC FUNCTIONS SETTING	FN	BASIC FUNCTIONS SETTING	FN
SET INFORMATION READ	UL	SET INFORMATION READ	UL
PARAMETER SET	SP	PARAMETER SET	SP

Host Commands

V680 commands	V600 commands		
Command name	Com- mand code	Command name	Com- mand code
TEST	TS	TEST	TS
VERSION READ	VS	VERSION READ	VS

V680 Commands

Communications with the ID Tag

There are four types of communications specifications for communicating with ID Tags using the Handheld Reader Writer.

Name	Communications specification	Description
Single trigger	ST	When the Hand-held Reader Writer receives a command, it communicates with an ID Tag and then returns a response.
Single auto	SA	When the Hand-held Reader Writer receives a command, it waits to detect an ID Tag in the Antenna's communication area. When the Hand-held Reader Writer detects an ID Tag, it communi- cates with the ID Tag and then returns a response.
Button trigger	BT	When the Hand-held Reader Writer receives a command, it communicates with the ID Tag when the activate switch is pressed, and then returns a response.
Button auto	BA	When the Hand-held Reader Writer receives a command, it waits to detect an ID Tag in the Antenna's communication area after the activate switch is pressed. When the Hand-held Reader Writer detects an ID Tag, it communicates with the ID Tag and then returns a response.

Single Trigger (ST) Communications Specifications

After the antenna end of the Hand-held Reader Writer has been moved close to an ID Tag, a single trigger (ST) communications specification is sent from the host device to communicate with the ID Tag. 1. Move the antenna end of the Hand-held Reader Writer close to the ID Tag.

Host device

ID Tag

$\frac{(4)}{\text { Response }}$
2. Send the command from the host device to the Hand-held Reader Writer.
3. The Hand-held Reader Writer will communicate with the ID Tag.
4. A response will be returned from the Hand-held Reader Writer to the host device.

If communications end normally, the operation indicator (LED) will light green and then turn OFF. If an ID Tag is not detected within the Hand-held Reader Writer's communication area when the command is sent from the host device, an ID Tag Non-existent Error will occur. At this time, the operation indicator will flash red.

Single Auto (SA) Communications Specifications

A single auto (SA) communications specification is used to communicate with an ID Tag when the antenna end of the Hand-held Reader Writer is moved close to an ID Tag after the command has been sent from the host device.

1. Send the command from the host device to the Hand-held Reader Writer.
2. The Hand-held Reader Writer will enter the communications stand-by state with the ID Tag, and the operation indicator (LED) will flash green.

3. Communications with the ID Tag will be performed when the antenna end of the Hand-held Reader Writer is moved close to the ID Tag.

4. A response is returned from the Hand-held Reader Writer to the host device.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.

Button Trigger (BT) Communications Specifications

A button trigger (BT) communications specification is used to communicate with an ID Tag when the antenna is moved close to an ID Tag and the activate switch is pressed after the command has been sent from the host device.

Host device

ID Tag

1. Send the command from the host device to the Hand-held Reader Writer. The operation indicator will light green.
2. Move the antenna end of the Hand-held Reader Writer close to the ID Tag.

3. Press the Hand-held Reader Writer activate switch.
4. The Hand-held Reader Writer will communicate with the ID Tag.
5. A response is returned to the host device from the Hand-held Reader Writer.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.
If an ID Tag is not detected within the Hand-held Reader Writer's communication area when the activate switch is pressed, an ID Tag Non-existent Error will occur.
At this time, the operation indicator will flash red.

Button Auto (BA) Communications Specifications

A button auto (BA) communication specification is used to execute auto commands after the command is sent from the host device and the activate switch of the Hand-held Reader Writer is pressed.

Host device

ID Tag

1. Send the command from the host device to the Hand-held Reader Writer. The operation indicator will light green.
2. Press the Hand-held Reader Writer activate switch.
3. The Hand-held Reader Writer will enter the communication stand-by state with the ID Tag, and the operation indicator (LED) will flash green.

4. Communications with the ID Tag will be performed when the antenna end of the Hand-held Reader Writer is moved close to an ID Tag.

5. A response is returned from the Hand-held Reader Writer to the host device.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.

Command and Response Formats

The formats of commands sent from the host device to the Hand-held Reader Writer and responses returned from the Hand-held Reader Writer to the host device are described below.

The command and response both consist of a single frame. Each frame (including the terminator) consists of up to 2,114 characters. (When specifying hexadecimal for using the WRITE command, the maximum is 4,218 characters.)

Command Frame

Name	
Command code	Contains the two-character code (see page 86) that indicates command.
Communications specification	Contains the two-character code that indicates the method used to communicate with the ID Tag (see page 57.$)$
Data	Contains the parameters or write data used to execute the command. - Data settings, processing specifications - Start address
	- Write data, number of bytes to be written - Number of read bytes - Number of check block bytes, decrement count - Specified data - Message data - Parameter data - Baud rate, data length, parity, and stop bit specifications - Auto command OFF specification - Settings for the TR command, settings for the FN command, and system setting data
Terminator	Indicates end of command/response.

Response Frame

Name	
End code	Indicates the execution result for the command. For information on end codes, refer to End Codes. Fixed value
Resend flag	Always 1.
Data	Always 0.
	The data for the response. - Read data - UID - Processing terminate timing - Parameter data - Message data - Model information

Note: Other than the above items, the same data as the command frame is returned in the response.

Command List

Commands can be classified into four major types.

- Communications Commands

The following commands are used for communications with the ID Tag.

Command code	Command name	Processing specification	Function	Page
RD	READ	A/H	Reads memory data from the ID Tag.	p.63
WT	WRITE	A/H	Writes data to the memory of the ID Tag.	p. 64
DF	DATA FILL	C/H	Writes the specified data to the specified number of bytes begin- ning from the specified start address.	p. 65
MD	DATA CHECK	C/K	Calculates or compares memory check codes in the ID Tag.	p. 68
OVERWRITE COUNT CON- TROL	H	Readrols the number of overwrites for ID Tags.	p. 67	
ID	ID CODE READ	A/H	Reads memory data from the ID Tag. Verifies data reliability using the check code.	p. 69
QR	READ WITH ERROR COR- RECTION	A/H	Writes data to the memory of the ID Tag. Writes a check code to enable verifying data reliability.	p. 70
QW	WRITE WITH ERROR COR- RECTION			

Communications Subcommands

The following commands are used to cancel or reset command execution.

Command code	Command name	Processing spec- ification	Function	Page
AA	COMMAND PROCESSING TERMINATE	-	Forcedly ends communications with the ID Tag.	p. 72
XZ	ABORT	-	Resets the Hand-held Reader Writer.	p. 72

Controller Control Commands

These commands are used to reset the Controller or set serial communications.

Command code	Command name	Function	Page
TR	COMMUNICATIONS CONDITIONS SETTING	Sets communications parameters for communications with the host device.	p.73
FN	BASIC FUNCTIONS SETTING	Sets the Auto Command OFF function.	p.74
UL	SET INFORMATION READ	Reads the settings data for the Hand-held Reader Writer.	p.75
SP	PARAMETER SET	Sets, reads, or initializes Hand-held Reader Writer parameters.	p. 76

Host Commands

These commands are used to test communications between the Hand-held Reader Writer and host device.

Command code	Command name	Function	Page
TS	TEST	Confirms the communications status between the Hand-held Reader Writer and host device. The data sent from the host device is returned as is.	p. 77
VS	VERSION READ	Reads the Hand-held Reader Writer's software model, software version, and software creation date.	p.78

Communications Commands

Details of communications commands used to communicate with the ID Tag are provided here.

READ (RD)

This command reads up to 2 Kbytes of data from the ID Tag.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. Refer to Communications with the ID Tag for details on the communications specification. p.57
Data setting	Sets the code format used to send responses for read data. A: ASCII H: Hexadecimal
Fixed value	Always 1.

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
Fixed value	Always 1.
Resend flag	Always 0.
Read data	Specifies the data read from the ID Tag. The characters in ASCII indicate the number of read bytes and the characters in hexadecimal indi- cate the number of read bytes $\times 2$.

WRITE (WT)
The WRITE command writes up to 2 Kbytes of data to the memory of an ID Tag.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. Refer to Communications with the ID Tag for details on the communications specification. p.57
Data setting	Sets the code format used to send responses for read data. A: ASCII H: Hexadecimal
Fixed value	Always 1.
Write area start address	Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex
Write data	Specifies the write data to the ID Tag. Up to 2 Kbytes of data can be written with one command. ASCII: 2,048 bytes (2,048 characters) Hexadecimal: 2,048 bytes (4,096 characters)

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
	For details on end codes, refer to End Codes.
Fixed value	Always 1.
Resend flag	Always 0.

DATA FILL (DF)

The DATA FILL command writes the designated data for the specified number of bytes beginning from the specified start address.
\therefore This command can be used to write data regardless of the write protection setting. Confirm that there is no important data in the area being written before executing this command.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. Refer to Communications with the ID Tag for details on the communications specification. p.57
Data setting	Sets the code format used to send responses for read data. A: ASCII H: Hexadecimal
Fixed value	Always 1.
Write area start address	Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex
Number of write bytes	Specifies the number of bytes of data to write to the ID Tag in 4-digit hexadecimal. Setting range: 0000 to FFFF hex (0000: The ID Tag will be written up to the end address.)
Write data	Specifies the write data to the ID Tag. ASCII: 2 digits specified. Hexadecimal: 4 digits specified.

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
	For details on end codes, refer to End Codes.
Fixed value	Always 1.
Resend flag	Always 0.

Example

This examples shows how to write 00101 hex to the memory area with addresses 0030 to 0006 (hex) for an ID Tag in which the same data and address is written. The communications specification is ST.

Response

Address (hex)	Before Writing	
002 F	2	F
0030	3	0
0031	3	1
0032	3	2
0033	3	3
0034	3	4
0035	3	5
0036	3	6

Address (hex)	Before Writing	
002 F	2	F
0030	0	1
0031	0	1
0032	0	1
0033	0	1
0034	0	1
0035	0	1
0036	3	6

OVERWRITE COUNT CONTROL (MD S/L)

The OVERWRITE COUNT CONTROL command is used to manage overwrite counts for EEPROM ID Tags. The specified overwrite count control area data is updated to enable determining when the EEPROM's write life has expired.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. For details on communications specifications, refer to Communications with the ID Tag. p.57
Processing specification	Specifies the check process. S: Subtraction (Overwrite control count can be set by user. 16,700,000 writes max.) See note. L: Addition (Overwrite control count fixed at 100,000 writes.)
Fixed value	Always 1.
Area start address	Specifies the start address of the overwrite count control area in 4-digit hexadecimal. Setting range: 0000 to FFFD hex
Decrement count	Specifies the number of refresh operations in 2-digit hexadecimal. Setting range: 00 to FF hex (00 Performs overwrite count check only.)
For details, refer to ID Tag Service Life Detection.	
p.121	

Note: The write life for EEPROM ID Tags is 100,000 at $25^{\circ} \mathrm{C}$.

Response

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
	For details on end codes, refer to End Codes.
Fixed value	Always 1.
Resend flag	Always 0.

For details on OVERWRITE COUNT CONTROL, refer to ID Tag Service Life Detection.

СНЕСК!
方p.121

DATA CHECK（MD C／K）

This command writes or compares the CRC code using the specified check block unit．The CRC code is calculated from the generated polynomial expression $X^{16}+X^{12}+X^{5}+1$ ．

Communications specifi－ cation	Specifies the method for communicating with the ID Tag． For details on communications specifications，refer to Communications with the ID Tag． p．57
Process setting	Specifies the check process． K：Check code calculation C：Check code comparison
Fixed value	Always 1．
Check block start address	Specifies the start address of the check block in 4－digit hexadecimal． Setting range： 0000 to 1FFD hex
Number of check block bytes	Specifies the number of bytes in the check block in 2－digit hexadecimal． Setting range： $00 \mathrm{~h}, 03$ to FF hex（00＝256 bytes）
The number of check block bytes is the check code calculation area＋ 2 bytes．	
For details，refer to Memory Check Function in ID Tag．	
p．123	

Response

End code	Indicates the execution result for the command． An end code of 00 indicates normal completion． For details on end codes，refer to End Codes．
Fixed value	Always 1.
Resend flag	Always 0.

[^1]
ID CODE READ (ID)

Reads the ID code from the ID Tag.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. For details on communications specifications, refer to Communications with the ID Tag. p.57
Data setting	Always H.
Fixed value	Always 1.

Response

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
	Always 1.
Fixed value	Always 0.
Resend flag	The UID is an ID that uniquely identifies an ID Tag. (Unique Identifier) Note: A ID code will not be attached if an error occurs.
UID	

The ID READ command is used to write the ID code to the ID Tag's memory, and therefore will be affected by the ambient temperature. Be careful when using the ID Tag in environments with high ambient temperatures.

READ WITH ERROR CORRECTION (QR)

Reads the data in the area written by the WRITE WITH ERROR CORRECTION (QW) command from the ID Tag. Be sure to read data from the same area written by the WRITE WITH ERROR CORRECTION (QW) command.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. For details on communications specifications, refer to Communications with the ID Tag. D.57
Data setting	Sets the code format used to send responses for read data. A: ASCII H: Hexadecimal
Fixed value	Always 1.

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
For details on end codes, refer to End Codes.	
Fixed value	Always 1.
Resend flag	Always 0.
Read data	Specifies the data read from the ID Tag. The characters in ASCII indicate the number of read bytes and the characters in hexadecimal indi- cate the number of read bytes $\times 2$.

WRITE WITH ERROR CORRECTION (QW)

The WRITE WITH ERROR CORRECTION (QW) command writes data to the ID Tag. The command also writes the ID Tag memory check and error correction codes as 5 bytes of write data. Do not change this code, it is required by the READ WITH ERROR CORRECTION (QR) command.

Communications specifi- cation	Specifies the method for communicating with the ID Tag. For details on communications specifications, refer to Communications with the ID Tag. p.57		
Data setting	Sets the code format used to send responses for write data. A: ASCII H: Hexadecimal		
Fixed value	Always 1.		Write area start address
:---			
Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFA hex			
Write data			
Specifies the write data to the ID Tag. The maximum number of bytes that can be read at one time is 510 bytes, as follows: ASCII: 510 bytes (510 characters) Hexadecimal: 510 bytes (1,020 characters)			

End code	Indicates the execution result for the command. The end code 00 indicates normal completion.
	For details on end codes, refer to End Codes.
Fixed value	Always 1.
Resend flag	Always 0.

Communications Subcommands

Communications subcommands are used together with communications commands. Communications with the ID Tag cannot be performed using only these subcommands.

COMMAND PROCESSING TERMINATE (AA)

Terminates the processing of the communications commands and restores the command wait status.

Processing specification	Always 0.
Fixed value	Always 1.

End code	Indicates the execution result for the command. 00: Normal completion 15: Command processing not executed.
	For details on end codes, refer to End Codes. p.80
Fixed value	Always 1.
Resend flag	Always 0. Termination timing 00: Terminate before ID Tag detection. 01: Terminate during ID Tag detection.

ABORT (XZ)

This command is used to restore the Hand-held Reader Writer to command wait status when there is no response from the Hand-held Reader Writer due to some problem during communications with the host device or with an ID Tag.

COMMUNICATIONS CONDITIONS SETTING (TR)

This command is used to set serial communications parameters. The Hand-held Reader Writer must be restarted to make the changes take effect.

```
            The COMMUNICATIONS CONDITIONS SETTING (TR) command can be used only with the V680-CH1D.
            Do not use it with the V680-CHUD.


Command Baud Data Parity Stop

\begin{tabular}{|l|l|}
\hline Baud rate & Sets the baud rate. \\
& \(0: 9,600 \mathrm{bps}\) \\
& \(1: 2,400 \mathrm{bps}\) \\
& \(2: 4,800 \mathrm{bps}\) \\
& \(3: 19,200 \mathrm{bps}\) \\
& \(4: 38,400 \mathrm{bps}\) \\
& Default setting: \(9,600 \mathrm{bps}\) \\
\hline Data length & Sets the data length. \\
& \(0: 7\) bits \\
& \(1: 8\) bits \\
& Default setting: 7 bits \\
\hline Parity & Sets the parity. \\
& \(0:\) Even parity \\
& \(1:\) Odd parity \\
& \(2:\) No parity \\
& Default setting: Even parity \\
\hline Stop bits & Sets the number of stop bits. \\
& \(0: 2\) bits \\
& \(1: 1\) bit \\
& Default setting: 2 bits \\
\hline
\end{tabular}

\section*{Response}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
\(00:\) Normal completion
\end{tabular} \\
& \begin{tabular}{l} 
For details on end codes, refer to End Codes. \\
Fixed value
\end{tabular} \\
\hline Resend flag & Always 1. \\
\hline
\end{tabular}

\section*{BASIC FUNCTIONS SETTING (FN)}

This command is used to set the Auto Commands OFF function. The Hand-held Reader Writer must be restarted to make the changes take effect.

\begin{tabular}{|l|l|}
\hline Auto Command OFF & \begin{tabular}{l} 
Designates whether the Auto Command OFF function is used. \\
specifications
\end{tabular} \\
\begin{tabular}{ll} 
0: Auto Command OFF used. \\
1: Auto Command OFF not used. \\
Default setting: Auto Command OFF used.
\end{tabular} \\
\hline Fixed value & Always 0. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
\(00:\) Normal completion
\end{tabular} \\
& \begin{tabular}{l} 
For details on end codes, refer to End Codes. \\
\end{tabular} \\
\hline Fixed value & Always 1. \\
\hline Resend flag & Always 0. \\
\hline
\end{tabular}

\section*{SET INFORMATION READ (UL)}

This command is used to read the settings of the Hand-held Reader Writer.

Only the Auto Command OFF function is supported by the V680-CHUD.
The settings made with the COMMUNICATIONS CONDITIONS SETTING (TR) command are not valid for the V600CHUB.


\section*{Response}



\section*{PARAMETER SET (SP)}

The PARAMETER SET command is used to set conditions for communicating with ID Tags. The various parameters are set in the Hand-held Reader Writer.


A memory error will occur if the power supply is interrupted while parameters are being changed.

\begin{tabular}{|c|c|c|}
\hline Process code (Upper digit) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Specifies the process to perform for the parameter. \\
0 : Change the internal setting. \\
1: Read internal setting. \\
9: Return internal setting to default value.
\end{tabular}} \\
\hline Process code (Lower digit) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Specifies the parameter. \\
1: Inter-character monitoring time \\
2: Response delay time \\
4: Auto command cancel time \\
H: Write protection setting \\
J: Protocol switch \\
L: Tag memory setting (See note 1.)
\end{tabular}} \\
\hline \multirow[t]{7}{*}{Parameter data (for changed parameters only)} & Data No. (See note 2.) & Settable values \\
\hline & 1 & Specify 4 decimal digits. 0000 to 9999 (ms) 0000: No monitoring, Default value: 0100 (ms) \\
\hline & 2 & Specify 2 decimal digits. 00 to 99 (ms) 00: No delay, Default value: 20 (ms) \\
\hline & 4 & Specify 2 decimal digits. 01 to 99 (s) Default value: 60 (s) \\
\hline & H & \begin{tabular}{l}
00: Write protection OFF \\
01: Write protection ON (default value)
\end{tabular} \\
\hline & J & \begin{tabular}{l}
00: V600 protocol (default value) \\
01: V680 protocol
\end{tabular} \\
\hline & L & \begin{tabular}{l}
00: Standard Mode (default value) \\
01: CA1D Mode
\end{tabular} \\
\hline
\end{tabular}

Note 1.: Parameter L is enabled only with version 1.1 or newer.
Note 2.: The data number of the parameter data is the number specified for the lower digit of the process code.
The settable values for the data number are the same as for the parameter specified by the lower digit of the process code.

\begin{tabular}{|l|l|}
\hline End code & Indicates the execution result for the command. \\
& 00: Normal completion \\
For details on end codes, refer to End Codes. \\
& Always 1. \\
\hline Fixed value & Always 0. \\
\hline Resend flag & Attached only when parameter data is being obtained. \\
\hline Parameter data & \\
\hline
\end{tabular}

\section*{Host Commands}
-TEST (TS)
This command returns test messages sent from the host device without changing anything.
The TEST command is used for communications tests between the host device and the Hand-held
Reader Writer.



\section*{Section 3}

Commands

\section*{VERSION READ (VS)}

The VERSION READ command reads the Hand-held Reader Writer's software model, software version, and software creation date.
\(\square\)
Command
Command code Terminator


\section*{Response}

\begin{tabular}{|l|l|}
\hline Software model & \begin{tabular}{l} 
The software creation date. \\
For the V680-CHUD: V680-CHUD\$000000 \\
For the V680-CH1D: V680-CH1D\$000000 \\
For the V680-CH1D-PSI: V680-CH1D\$000000
\end{tabular} \\
\hline Software version & \begin{tabular}{l} 
The software version. \\
*.**
\end{tabular} \\
\hline Software creation date & \begin{tabular}{l} 
The software creation date. \\
\(20 * * / * * / * *\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Other Commands}

\section*{UNDEFINED COMMAND RESPONSE (IC)}

This command is returned as the response when the Hand-held Reader Writer cannot read the command header.

\section*{Response}


\section*{Error Response}

If an error occurs during communications with the host device, or the ID Tag, error notification is provided in the end code.

Response


\section*{End Codes}

End codes are given in 2-digit hexadecimal.
\begin{tabular}{|c|c|c|}
\hline Status & End code & Meaning \\
\hline Normal & 00 & Normal completion \\
\hline \multirow[t]{6}{*}{Host communications error} & 10 (See note.) & Vertical parity error \\
\hline & 11 (See note.) & Framing error \\
\hline & 12 (See note.) & Overrun error \\
\hline & 14 & Format error \\
\hline & 15 & Execution status error \\
\hline & 18 & Frame length error \\
\hline \multirow[t]{9}{*}{Lower communications error} & 70 & ID Tag communications error \\
\hline & 71 & Mismatch error \\
\hline & 72 & ID Tag non-existent error \\
\hline & 76 & \begin{tabular}{l}
Error end code for the DATA CHECK command or OVERWRITE COUNT CON- \\
TROL command (verification error or overwrite count exceeded) or error for READ WITH ERROR CORRECTION or DATA CHECK command
\end{tabular} \\
\hline & 77 & Warning for READ WITH ERROR CORRECTION or DATA CHECK command \\
\hline & 79 & ID Tag error \\
\hline & 7A & Address error \\
\hline & 7C & Antenna error \\
\hline & 7D & Write protection error \\
\hline Memory error & 93 & Internal memory error \\
\hline
\end{tabular}

Note: Vertical parity errors, framing errors, and overrun errors do not occur for the V680-CHUD.


For details on each error, refer to Error Tables.

p. 128

\section*{V600 Commands}

There are 4 types of commands for communicating with the ID Tag using the Hand-held Reader Writer.
- Normal commands
- Button commands
- Auto commands
- Button auto commands

\section*{Normal Commands}

Normal commands are sent from the host device for communications with the ID Tag, after the antenna end of the Hand-held Reader Writer has been moved close to the ID Tag.
1. Move the antenna end of the Hand-held Reader Writer close to the ID Tag.


Host device



ID Tag

2. Commands are sent from the host device to the Hand-held Reader Writer.
3. The Hand-held Reader Writer communicates with the ID Tag.
4. A response is returned from the Hand-held Reader Writer to the host device.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.
If the ID Tag is not detected within the Hand-held Reader Writer's communication area when the command is sent from the host device, an ID Tag Non-existent Error will occur.
At this time, the operation indicator will flash red.

\section*{Button Commands}

Button commands used to perform communications with the ID Tag are activated when the activate switch is pressed after commands are sent from the host device, and the antenna end of the Hand-held Reader Writer has been moved close to the ID Tag.

\section*{Host device}


ID Tag

1. A command is sent from the host device to the Hand-held Reader Writer. As a result, the operation indicator will light green.
2. Move the antenna end of the Hand-held Reader Writer close to the ID Tag.

3. Press the Hand-held Reader Writer activate switch.
4. The Hand-held Reader Writer communicates with the ID Tag.
5. A response is returned to the host device from the Hand-held Reader Writer.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.
If the ID Tag is not detected within the Hand-held Reader Writer's communication area when the activate switch is pressed, an ID Tag Non-existent Error will occur.
At this time, the operation indicator will flash red.

\section*{Auto Commands}

Auto commands can execute communications with the ID Tag when the antenna end of the Hand-held Reader Writer has been moved close to the ID Tag after the command is sent from the host device.
Host device

1. A command is sent from the host device to the Hand-held Reader Writer.
2. The Hand-held Reader Writer enters the communications stand-by state with the ID Tag, and the operation indicator (LED) flashes green.

3. Communications with the ID Tag are performed when the antenna end of the Hand-held Reader Writer is moved close to the ID Tag.

4. A response is returned to the host device from the Hand-held Reader Writer.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.

\section*{Button Auto Commands}

Button auto commands execute auto commands after a command is sent from the host device and the activate switch of the Hand-held Reader Writer is pressed.

1. A command is sent from the host device to the Hand-held Reader Writer. As a result, the operation indicator will light green.
2. Press the Hand-held Reader Writer activate switch.
3. The Hand-held Reader Writer enters the communications stand-by state with the ID Tag, and the operation indicator (LED) flashes green.

4. Communications with the ID Tag are performed when the antenna end of the Hand-held Reader Writer is moved close to the ID Tag.

5. A response is returned to the host device from the Hand-held Reader Writer.

If communications end normally, the operation indicator (LED) will light green and then turn OFF.

\section*{Command and Response Formats}

The formats of commands sent from the host device to the Hand-held Reader Writer and responses returned from the Hand-held Reader Writer to the host device are described below.

The command and response both consist of a single frame. The frame (including the terminator) consists of up to, 2,114 characters.

\section*{Command Frame}


Response Frame

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \\
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
For information on end codes, refer to End Codes. \\
\\
Fixed value
\end{tabular} \\
\hline Resend flag & Always 1. \\
\hline Data & Always 0. \\
& \begin{tabular}{l} 
Contains the data for the response. \\
- Read data \\
- UID \\
- Processing terminate timing \\
- Calculation data \\
- Message data \\
- Parameter data \\
- Model information
\end{tabular} \\
\hline
\end{tabular}

Note: Other than the above items, the same data as the command frame is returned in the response.

\section*{Command List}

Commands can be classified into four major types.

\section*{Communications Commands}

The following commands are used for communications with the ID Tag.
\begin{tabular}{|c|c|c|c|}
\hline Command code & Command name & Function & Page \\
\hline RD & READ & Reads memory data from the ID Tag. & p. 87 \\
\hline WT & WRITE & Writes data to the memory of the ID Tag. & p. 89 \\
\hline AR & AUTO READ & Reads data from the ID Tag when the ID Tag enters the communications area. & p. 90 \\
\hline AW & AUTO WRITE & Writes data to the memory of the ID Tag when the ID Tag enters the communications area. & p. 92 \\
\hline BR & BUTTON READ & Reads data from the memory of the ID Tag when the activate switch is pressed. & p. 94 \\
\hline BW & BUTTON WRITE & Writes data to the memory of the ID Tag when the activate switch is pressed. & p. 96 \\
\hline UR & BUTTON AUTO READ & Reads data from the ID Tag when the ID Tag enters the communications area after the activate switch is pressed. & p. 97 \\
\hline UW & BUTTON AUTO WRITE & Writes data to the memory of the ID Tag when the ID Tag enters the communications area after the activate switch is pressed. & p. 99 \\
\hline CW & CALCULATION WRITE & Writes the calculation results for the memory data to the ID Tag. & p. 100 \\
\hline FL & DATA FILL & Writes data for the specified number of write bytes beginning from the write start address specified in the command. & p. 101 \\
\hline AF & AUTO DATA FILL & Writes the specified data to the specified number of bytes beginning from the specified start address when the ID Tag approaches. & p. 102 \\
\hline MDC/K & DATA CHECK & Calculates or compares memory check codes in the ID Tag. & p. 104 \\
\hline MDS & OVERWRITE COUNT CONTROL & Controls the number of overwrites for ID Tags. & p. 105 \\
\hline ID & ID CODE READ & Reads the UID in the ID Tag. & p. 106 \\
\hline
\end{tabular}

\section*{Communications Subcommands}

These commands are used to cancel command execution.
\begin{tabular}{|c|l|l|c|}
\hline Command code & \multicolumn{1}{|c|}{ Command name } & \multicolumn{1}{|c|}{ Function } & Page \\
\hline AA & \begin{tabular}{l} 
COMMAND PROCESS- \\
ING TERMINATE
\end{tabular} & Forcedly ends communications with the ID Tag. & p.107 \\
\hline XZ & ABORT & Resets the Hand-held Reader Writer. & p. 110 \\
\hline
\end{tabular}

\section*{- Controller Control Commands}

These commands are used to reset the Controller or set serial communications.
\begin{tabular}{|c|l|l|c|}
\hline Command code & \multicolumn{1}{|c|}{ Command name } & \multicolumn{1}{c|}{ Function } & Page \\
\hline TR & \begin{tabular}{l} 
COMMUNICATIONS CON- \\
DITIONS SETTING
\end{tabular} & \begin{tabular}{l} 
Sets communications parameters for communications with the host \\
device.
\end{tabular} & p. 111 \\
\hline FN & \begin{tabular}{l} 
BASIC FUNCTIONS SET- \\
TING
\end{tabular} & Sets the Specify Auto Command OFF function. & p.112 \\
\hline UL & SET INFORMATION READ & Reads the settings data for the Hand-held Reader Writer. & p. 113 \\
\hline SP & PARAMETER SET & Sets, reads, or initializes Hand-held Reader Writer parameters. & p. 114 \\
\hline
\end{tabular}

\section*{Host Commands}

These commands are used to test communications between the Hand-held Reader Writer and host device.
\begin{tabular}{|c|l|l|l|}
\hline Command code & \multicolumn{1}{|c|}{ Command name } & \multicolumn{1}{c|}{ Function } & Page \\
\hline TS & TEST & \begin{tabular}{l} 
Confirms the communications status between the Hand-held Reader Writer \\
and host device. The data sent from the host device is returned as is.
\end{tabular} & p. 108 \\
\hline VS & VERSION READ & \begin{tabular}{l} 
Reads the Hand-held Reader Writer's software model, software version, \\
and software creation date.
\end{tabular} & p. 109
\end{tabular}

\section*{Communications Commands}

Details of communications commands used to communicate with the ID Tag are provided here.

\section*{READ (RD)}

This command reads data from the ID Tag. If the ID Tag is not in the communications area, an error response (end code: 72 = ID Tag non-existent) will be returned.

\section*{Command}

Processing area number: 1


Processing area number: 2

\begin{tabular}{|l|l|}
\hline Data setting & \begin{tabular}{l} 
Sets the code format used to send responses for read data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same \\
time within a single command frame.
\end{tabular} \\
\hline \begin{tabular}{l} 
Processing area number \\
setting
\end{tabular} & \begin{tabular}{l} 
Specifies the processing area number. \\
Setting range: 1 to 9, A (A = 10)
\end{tabular} \\
\hline Read area start address & \begin{tabular}{l} 
Specifies the start address of the area to be read from the ID Tag in 4-digit hexadecimal. \\
Setting range: 0000 to FFFF hex
\end{tabular} \\
& \begin{tabular}{l} 
When multiple processing areas are used, specify the areas in order starting from the smallest \\
address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of bytes to read & \begin{tabular}{l} 
Specifies the number of bytes to be read from the ID Tag in 2-digit hexadecimal. The maximum \\
number of bytes that can be read at one time is 256 bytes, as follows: \\
\(\bullet\) ASCII: 256 bytes (256 characters) \\
\(\bullet\) Hexadecimal: 256 bytes ( 512 characters)
\end{tabular} \\
Setting range: 00 to FF hex (00 = 256 bytes) \\
When multiple processing areas are used, set so that the total number of bytes from all areas to be \\
read is within 256 bytes, as follows: \\
Area (1) bytes +... Area (N) bytes \(\leq 256\) bytes
\end{tabular}

\section*{Response}

Processing Area Number: 1


\section*{Processing Area Number: 2}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
\hline Read data & \begin{tabular}{l} 
Specifies the data read from the ID Tag. \\
The characters in ASCII indicate the number of read bytes and the code List. \\
cate the number of read bytes x 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{WRITE (WT)}

This command writes data to the ID Tag. If the ID Tag is not in the communications area, an error response (end code: 72 = ID Tag non-existent) will be returned.

\section*{Command}

Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for write data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Write area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of write bytes & \begin{tabular}{l}
When multiple processing areas are used, specifies the number of bytes to be written to the ID Tag in 2-digit hexadecimal. The maximum number of bytes that can be written at one time is 256 bytes, as follows: \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes (512 characters) \\
Setting range: 01 to FF hex \\
When multiple processing areas are used, set so that the total number of bytes to be written for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline Write data & \begin{tabular}{l}
Specifies the write data from the ID Tag. \\
The characters in ASCII indicate the number of write bytes and the characters in hexadecimal indicate the number of write bytes \(\times 2\).
\end{tabular} \\
\hline
\end{tabular}


\section*{AUTO READ (AR)}

This command reads data from the ID Tag when the ID Tag enters the communications area. The Hand-held Reader Writer responds when the communications between the Hand-held Reader Writer and ID Tag have ended.

\section*{Command}

Processing Area Number: 1


\section*{Processing Area Number: 2}

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Specifies the code format used to send responses for write data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Read area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be read from in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of read bytes & \begin{tabular}{l}
When multiple processing areas are used, specifies the number of bytes to be read from the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be read at one time is 256 bytes. \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes ( 512 characters) \\
Setting range: 00 to FF hex ( \(00=256\) bytes) \\
When multiple processing areas are used, set so that the total number of bytes to be read for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline
\end{tabular}

\section*{Response}

Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
\hline Read data & \begin{tabular}{l} 
Specifies the data read from the ID Tag. \\
The characters in ASCII indicate the number of read bytes and the coder cor to End coders in hexadecimal indi- \\
cate the number of read bytes x 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{AUTO WRITE (AW)}

This command writes data to the ID Tag when the ID Tag enters the communications area. The Handheld Reader Writer responds when communications between the Hand-held Reader Writer and ID Tag have ended.

\section*{Command}

Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for write data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Write area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of write bytes & \begin{tabular}{l}
When multiple processing areas are used, specifies the number of bytes to be written to the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be written at one time is 256 bytes. \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes (512 characters) \\
Setting range: 01 to FF hex \\
When multiple processing areas are used, set so that the total number of bytes to be written for all areas is within 256 bytes, 6 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline Write data & \begin{tabular}{l}
Indicates the data to be written to the ID Tag. \\
The characters in ASCII indicate the number of write bytes and the characters in hexadecimal indicate the number of write bytes \(\times 2\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Response} \\
\hline \[
\begin{aligned}
& \text { Command } \\
& \text { code }
\end{aligned}
\] & End code & Terminator \\
\hline A W & \(0{ }^{0}\) & * CR \\
\hline \multicolumn{3}{|l|}{22} \\
\hline End code & & \begin{tabular}{l}
Indicates the execution result for the command. The end code 00 indicates normal completion. \\
For details on end codes, refer to End code List. p. 116
\end{tabular} \\
\hline
\end{tabular}

\section*{BUTTON READ (BR)}

After this command is received by the Hand-held Reader Writer, data is read from the ID Tag by pressing the activate switch. If the activate switch is pressed and the ID Tag is not in the communications area, an error response (end code: 72 = ID Tag non-existent) will be returned.

\section*{Command}

Processing Area Number: 1


\section*{Processing Area Number: 2}

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for read data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Read area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be read from in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of read bytes & \begin{tabular}{l}
Specifies the number of bytes to be read from the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be read at one time is 256 bytes. \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes ( 512 characters) \\
Setting range: 00 to FF hex ( \(00=256\) bytes) \\
When multiple processing areas are used, set so that the total number of bytes to be read for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline
\end{tabular}

\section*{Response}

Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
\hline Read data & \begin{tabular}{l} 
Indicates the data read from the ID Tag. \\
The characters in ASCII indicate the number of read bytes and the conde coraracters in hexadecimal indi- \\
cate the number of read bytes x 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{BUTTON WRITE (BW)}

After this command is received by the Hand-held Reader Writer, data is written to the ID Tag by pressing the activate switch. If the activate switch is pressed and the ID Tag is not in the communications area, an error response (end code: 72 = ID Tag non-existent) will be returned.

\section*{Command}

Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for write data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Write area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of write bytes & \begin{tabular}{l}
When multiple processing areas are used, specifies the number of bytes to be written to the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be written at one time is 256 bytes. \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes ( 512 characters) \\
Setting range: 01 to FF hex \\
When multiple processing areas are used, set so that the total number of bytes to be written for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline Write data & \begin{tabular}{l}
Indicates the data to be written to the ID Tag. \\
The characters in ASCII indicate the number of write bytes and the characters in hexadecimal indicate the number of write bytes \(\times 2\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Response} & \multirow[b]{2}{*}{Terminator} \\
\hline Command code & End code & \\
\hline B W & 00 & * CR \\
\hline 2 & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion. \\
For details on end codes, refer to End code List. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{BUTTON AUTO READ (UR)}

After this command is received by the Hand-held Reader Writer, data will be read from the ID Tag after the activate switch is pressed and the Hand-held Reader Writer is close to the ID Tag. The Hand-held Reader Writer responds when communications between the Hand-held Reader Writer and ID Tag have ended.

Command
Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for read data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Read area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be read from in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of read bytes & \begin{tabular}{l}
Specifies the number of bytes to be read from the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be read at one time is 256 bytes. \\
- ASCII: 256 bytes ( 256 characters) \\
- Hexadecimal: 256 bytes ( 512 characters) \\
Setting range: 00 to FF hex ( \(00=256\) bytes) \\
When multiple processing areas are used, set so that the total number of bytes to be read for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline
\end{tabular}

\section*{Response}

Processing Area Number: 1
Command


Processing Area Number: 2

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
\hline Read data & \begin{tabular}{l} 
For details on end codes, refer to End code List. \\
Indicates the data read from the ID Tag. \\
The characters in ASCII indicate the number of read bytes and the characters in hexadecimal indi- \\
cate the number of read bytes \(\times 2\).
\end{tabular} \\
\hline
\end{tabular}

\section*{BUTTON AUTO WRITE (UW)}

After this command is received by the Hand-held Reader Writer, data will be written to the ID Tag after the activate switch is pressed and the Hand-held Reader Writer is close to the ID Tag. The Hand-held Reader Writer responds when communications between the Hand-held Reader Writer and ID Tag have ended.

Command
Processing Area Number: 1


Processing Area Number: 2

\begin{tabular}{|c|c|}
\hline Data setting & \begin{tabular}{l}
Sets the code format used to send responses for write data. \\
A: ASCII \\
H: Hexadecimal \\
When multiple processing areas are used, ASCII and hexadecimal can be specified at the same time within a single command frame.
\end{tabular} \\
\hline Processing area number setting & Specifies the processing area number. Setting range: 1 to \(9, A(A=10)\) \\
\hline Write area start address & \begin{tabular}{l}
Specifies the start address of the area in the ID Tag to be written to in 4-digit hexadecimal. Setting range: 0000 to FFFF hex \\
When multiple processing areas are used, specify the areas in order starting from the smallest address. The same area cannot be specified twice.
\end{tabular} \\
\hline Number of write bytes & \begin{tabular}{l}
When multiple processing areas are used, specifies the number of bytes to be written to the ID Tag in 2-digit hexadecimal. \\
The maximum number of bytes that can be written at one time is 256 bytes. \\
- ASCII: 256 bytes (256 characters) \\
- Hexadecimal: 256 bytes (512 characters) \\
Setting range: 01 to FF hex \\
When multiple processing areas are used, set so that the total number of bytes to be written for all areas is within 256 bytes, as follows: \\
Area (1) bytes \(+\ldots+\) Area (N) bytes \(\leq 256\) bytes
\end{tabular} \\
\hline Write data & \begin{tabular}{l}
Indicates the data to be written to the ID Tag. \\
The characters in ASCII indicate the number of write bytes and the characters in hexadecimal indicate the number of write bytes \(\times 2\).
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion. \\
For details on end codes, refer to End code List.
\end{tabular} \\
& p. 116
\end{tabular}

\section*{Calculation Write (CW)}

The ID Tag's memory data and calculation data is calculated in hexadecimal and the result is written to the ID Tag. If an overflow during addition or underflow during subtraction occurs, the data will not be written and an error response (end code: \(76=\) Data check error) will be returned.


\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
\hline Calculation data & \begin{tabular}{l} 
Returns the calculation result data written to the iD Tag. \\
If an overflow during addition or underflow during subtraction occurs, the end code List. \\
error) will be returned. The data prior to the calculation will not be added to the response.
\end{tabular} \\
\hline
\end{tabular}

\section*{DATA FILL (FL)}

Writes fill data for the specified number of bytes beginning from the start address specified in the ID Tag. The write data is specified in hexadecimal.
If there is no Tag in the communications area when the Hand-held Reader Writer receives the command from the host device, the Hand-held Reader Writer will return an error response (end code: 72 = ID Tag non-existent).

\begin{tabular}{l}
\begin{tabular}{|l|l|l|l|l|}
\hline Response \\
\begin{tabular}{c} 
Command \\
code
\end{tabular} & End code & Terminator \\
\hline F & L & 0 & 0 & \(*\) \\
\hline 2 & CR \\
\hline 2 & 2 & 2 \\
\hline 2
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion. \\
For details on end codes, refer to End code List.
\end{tabular} \\
\hline
\end{tabular}
\[
\text { 织 } 0.116
\]

\section*{- Example}

Writing 01 hex to the 6 bytes in memory starting from address 0030 (hex) for an ID Tag in which the data at each address is the same as the address.

\begin{tabular}{c|c|c|} 
(hex) & \multicolumn{2}{|c|}{ Before Writing } \\
\cline { 2 - 3 } 002 F & 2 & F \\
\cline { 2 - 3 } 0030 & 3 & 0 \\
\cline { 2 - 3 } 0031 & 3 & 1 \\
\cline { 2 - 3 } 0032 & 3 & 2 \\
\cline { 2 - 3 } 0033 & 3 & 3 \\
\cline { 2 - 3 } 0034 & 3 & 4 \\
\cline { 2 - 3 } 0035 & 3 & 5 \\
\cline { 2 - 3 } 0036 & 3 & 6 \\
\cline { 2 - 3 } & &
\end{tabular}
\begin{tabular}{l|c|c|}
\multirow{2}{*}{ (hex) } & \multicolumn{2}{|c|}{ After Writing } \\
\cline { 2 - 3 } 002 F & 2 & F \\
\cline { 2 - 3 } 0030 & 0 & 1 \\
\cline { 2 - 3 } 0031 & 0 & 1 \\
\cline { 2 - 3 } 0032 & 0 & 1 \\
\cline { 2 - 3 } 0033 & 0 & 1 \\
\cline { 2 - 3 } 0034 & 0 & 1 \\
\cline { 2 - 3 } 0035 & 0 & 1 \\
\cline { 2 - 3 } 0036 & 3 & 6 \\
\cline { 2 - 3 } & & \multicolumn{2}{|c|}{}
\end{tabular}

\section*{AUTO DATA FILL (AF)}

Writes the fill data to the specified number of bytes beginning from the start address specified in the ID Tag when the ID Tag approaches. The write data is specified in hexadecimal. A response will be returned when communications with the ID Tag have been completed.

This command can be used to write data regardless of the write protection setting. Confirm that there is no important data in the area being written before executing this command.

CHECK!


\begin{tabular}{|l|l}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion. \\
\\
\end{tabular}
\end{tabular}

\section*{- Example}

Writing 01 hex to the 6 bytes in memory starting from address 0030 (hex) for an ID Tag in which the data at each address is the same as the address.

\begin{tabular}{l|c|c|} 
(hex) & \multicolumn{2}{|c|}{ Before Writing } \\
\cline { 2 - 3 } 002 F & 2 & F \\
\hline 0030 & 3 & 0 \\
\cline { 2 - 3 } 0031 & 3 & 1 \\
\cline { 2 - 3 } 0032 & 3 & 2 \\
\cline { 2 - 3 } 0033 & 3 & 3 \\
\cline { 2 - 3 } 0034 & 3 & 4 \\
\cline { 2 - 3 } 0035 & 3 & 5 \\
\cline { 2 - 3 } 0036 & 3 & 6 \\
\cline { 2 - 3 } & \multicolumn{2}{|c|}{}
\end{tabular}
\begin{tabular}{l|c|c|}
\multirow{2}{*}{\begin{tabular}{l} 
(hex) \\
\(002 F\) \\
0030
\end{tabular}} & \multicolumn{2}{|c|}{ After Writing } \\
\cline { 2 - 3 } & 2 & \(F\) \\
\cline { 2 - 3 } 0031 & 0 & 1 \\
\cline { 2 - 3 } 0032 & 0 & 1 \\
\cline { 2 - 3 } 0033 & 0 & 1 \\
\cline { 2 - 3 } 0034 & 0 & 1 \\
\hline 0035 & 0 & 1 \\
\hline 0036 & 0 & 1 \\
\cline { 2 - 3 } & 3 & 6 \\
\cline { 2 - 3 } & &
\end{tabular}

\section*{DATA CHECK (MDC/K)}

This command writes or compares the CRC code using the specified check block unit. The CRC code is calculated from the generated polynomial expression \(X^{16}+X^{12}+X^{5}+1\).


\begin{tabular}{|l|l}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion. \\
For details on end codes, refer to End code List.
\end{tabular} \\
& p. 116
\end{tabular}

\section*{OVERWRITE COUNT CONTROL (MDS)}

This command is used to control the number of overwrite operations performed by EEPROM ID Tags. This command determines whether the EEPROM overwrite count has been exceeded when the specified number of overwrites is subtracted from the specified overwrite count control area data.


\begin{tabular}{|l|l} 
End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
00: Normal completion \\
76: Data error warning \\
For details on end codes, refer to End code List.
\end{tabular} \\
&
\end{tabular}

\footnotetext{
For details on controlling the overwrite count, refer to MDS Command.
}
"ä
-HECK!
着p.121

\section*{ID CODE READ (ID)}

Reads the ID code in the ID Tag.

\begin{tabular}{|l|l|}
\hline Data setting & Always H. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
The end code 00 indicates normal completion.
\end{tabular} \\
& \begin{tabular}{l} 
The UID is an ID that uniquely identifies an ID Tag. (Unique Identifier) \\
Note: An ID code will not be attached if an error occurs.
\end{tabular} \\
\hline UID &
\end{tabular}

\footnotetext{
The ID READ command writes the ID code to the ID Tag's memory, and will thus be affected by the ambient temperature. Be careful when using the ID Tag in environments with high ambient temperatures.
}

\section*{Communications Subcommands}

Communications subcommands are used together with communications commands. Communications with the ID Tag cannot be performed using only these subcommands.

\section*{COMMAND PROCESSING TERMINATE (AA)}

Terminates the processing of the communications commands and restores the command wait status.

\begin{tabular}{|l|l|}
\hline End code & Indicates the execution result for the command. \\
& \begin{tabular}{l} 
00: Normal completion \\
15: Command processing not executed. \\
\\
\\
\end{tabular} \\
\hline For details on end codes, refer to End code List. \\
& \begin{tabular}{l} 
Indicates the timing for terminating command processing. \\
\(0:\) Terminate before ID Tag detection. \\
1: Terminate during ID Tag detection.
\end{tabular} \\
\hline
\end{tabular}

\section*{Host Commands}

\section*{■TEST (TS)}

This command returns test messages sent from the host device without changing anything. The TEST command is used for communications tests between the host device and the Hand-held Reader Writer.

\begin{tabular}{|l|l|}
\hline Message data & Any text string for testing communications containing 514 characters max.
\end{tabular}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
\(00:\) Normal completion
\end{tabular} \\
& For details on end codes, refer to End code List. \\
& Any text string for testing communications containing 514 characters max. \\
\hline Message data & \\
\hline
\end{tabular}

\section*{VERSION READ (VS)}


\section*{Response}

\begin{tabular}{|l|l|}
\hline Software model & \begin{tabular}{l} 
The software creation date. \\
For the V680-CHUD: V680-CHUD\$000000 \\
For the V680-CH1D: V680-CH1D\$000000 \\
For the V680-CH1D-PSI: V680-CH1D\$000000
\end{tabular} \\
\hline Software version & \begin{tabular}{l} 
The software version. \\
*. \(* *\)
\end{tabular} \\
\hline Software creation date & \begin{tabular}{l} 
The software creation date. \\
\(20 * * / * * / * *\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Controller Control Commands}

These commands are used to reset the Controller or set serial communications.

\section*{ABORT (XZ)}

This command is used to restore the Hand-held Reader Writer to command wait status when there is no response from the Hand-held Reader Writer due to some problem during communications with the host device or with an ID Tag.


\section*{COMMUNICATIONS CONDITIONS SETTING (TR)}

This command is used to set serial communications parameters. The Hand-held Reader Writer must be restarted to make the changes take effect.

\section*{\(\because\) (ค \\ The COMMUNICATIONS CONDITIONS SETTING (TR) command can be used only with the V680-CH1D. Do not use it with the V680-CHUD. \\ CHECK!}

\section*{Command}

Command Baud Data Parity Stop

\begin{tabular}{|l|l|}
\hline Baud rate & Sets the baud rate. \\
& \(0: 9,600\) bps \\
& \(1: 2,400 \mathrm{bps}\) \\
& \(2: 4,800 \mathrm{bps}\) \\
& \(3: 19,200 \mathrm{bps}\) \\
& \(4: 38,400\) bps \\
& Default setting: 9,600 bps \\
\hline Data length & Sets the data length. \\
& \(0: 7\) bits \\
& \(1: 8\) bits \\
& Default setting: 7 bits \\
\hline Parity & Sets the parity. \\
& \(0:\) Even parity \\
& \(1:\) Odd parity \\
& \(2:\) No parity \\
& Default setting: Even parity \\
\hline Stop bits & Sets the number of stop bits. \\
& \(0: 2\) bits \\
& \(1: 1\) bit \\
& Default setting: 2 bits \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
\(00:\) Normal completion \\
For details on end codes, refer to End code List. \\
\end{tabular} \\
\hline
\end{tabular}

\section*{BASIC FUNCTIONS SETTING (FN)}

This command is used to set the Auto Commands OFF function. The Hand-held Reader Writer must be restarted to make the changes take effect.

\section*{A memory error will occur if the power supply is interrupted while parameters are being changed.}

\begin{tabular}{|l|l}
\hline Auto Command OFF & Designates whether the Auto Command OFF function is used.
\end{tabular}
\begin{tabular}{l|l} 
specifications & 0 : Auto Command OFF used.
\end{tabular}
1: Auto Command OFF not used.
Default setting: Auto Command OFF used.
\begin{tabular}{l|l} 
Fixed value & Always 0.
\end{tabular}

\begin{tabular}{|l|l}
\hline End code & \begin{tabular}{l} 
Indicates the execution result for the command. \\
00: Normal completion
\end{tabular} \\
& For details on end codes, refer to End code List. \\
& p. 116
\end{tabular}

\section*{SET INFORMATION READ (UL)}

This command is used to read the settings of the Hand-held Reader Writer.
" 1 Only the Auto Command OFF function is supported by the V680-CHUD.
The settings made with the COMMUNICATIONS CONDITIONS SETTING (TR) command are not valid for the V600CHUD.
CHECK!


\section*{Response}

\begin{tabular}{|c|c|c|}
\hline End code & \multicolumn{2}{|l|}{\begin{tabular}{l}
Indicates the execution result for the command. 00: Normal completion \\
For details on end codes, refer to End code List. p. 116
\end{tabular}} \\
\hline \multirow[t]{4}{*}{Settings for TR command} & Baud rate & \begin{tabular}{l}
0: 9,600 bps \\
1: 2,400 bps \\
2: 4,800 bps \\
3: 19,200 bps \\
4: 38,400 bps
\end{tabular} \\
\hline & Data length & \begin{tabular}{l}
0: 7 bits \\
1: 8 bits
\end{tabular} \\
\hline & Parity & \begin{tabular}{l}
0: Even parity \\
1: Odd parity \\
2: No parity
\end{tabular} \\
\hline & Stop bits & \[
\begin{aligned}
& 0: 2 \text { bits } \\
& 1: 1 \text { bit }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Settings for FN command} & Auto Command OFF Specification & \begin{tabular}{l}
0 : Auto Command OFF \\
1: Auto Command OF
\end{tabular} \\
\hline & Fixed value & Always 0. \\
\hline System data & \multicolumn{2}{|l|}{SI000000} \\
\hline
\end{tabular}

PARAMETER SET (SP)
The PARAMETER SET command is used to set conditions for communicating with ID Tags. The various parameters are set in the Hand-held Reader Writer.


A memory error will occur if the power supply is interrupted while parameters are being changed.

\begin{tabular}{|c|c|c|}
\hline Process code (Upper digit) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Specifies the process to perform for the parameter. \\
0 : Change the internal setting. \\
1: Read internal setting. \\
9: Return internal setting to default value.
\end{tabular}} \\
\hline Process code (Lower digit) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Specifies the parameter. \\
1: Inter-character monitoring time \\
2: Response delay time \\
4: Auto command cancel time \\
H: Write protection setting \\
J : Protocol switch \\
L: Tag memory setting (See note 1.)
\end{tabular}} \\
\hline \multirow[t]{7}{*}{Parameter data (for changed parameters only)} & Data No. (See note 2.) & Settable values \\
\hline & 1 & Specify 4 decimal digits. 0000 to 9999 (ms) 0000: No monitoring, Default value: 0100 (ms) \\
\hline & 2 & Specify 2 decimal digits. 00 to 99 (ms) 00: No delay, Default value: 20 (ms) \\
\hline & 4 & Specify 2 decimal digits. 01 to 99 (s) Default value: 60 (s) \\
\hline & H & \begin{tabular}{l}
00: Write protection OFF \\
01: Write protection ON (default value)
\end{tabular} \\
\hline & J & \begin{tabular}{l}
00: V600 protocol (default value) \\
01: V680 protocol
\end{tabular} \\
\hline & L & \begin{tabular}{l}
0 : Standard Mode (default value) \\
1: CA1D Mode
\end{tabular} \\
\hline
\end{tabular}

Note 1.: Parameter data \(L\) is enabled only with version 1.1 or newer.
Note 2.: The data number of the parameter data is the number specified for the lower digit of the process code.
The settable values for the data number are the same as for the parameter specified by the lower digit of the process code.


\section*{Other Commands}

\section*{UNDEFINED COMMAND RESPONSE (IC)}

This command is returned as the response when the Hand-held Reader Writer cannot read the command header.


Error Response
If an error occurs during communications with the host device, or the ID Tag, error notification is provided in the end code.


\section*{End code List}

End codes are indicated in 2-digit hexadecimal.
\begin{tabular}{|c|c|c|}
\hline Status & End code & Meaning \\
\hline Normal & 00 & Normal completion \\
\hline Host communications error & 10 *1 & Vertical parity error \\
\hline & \(11 * 1\) & Framing error \\
\hline & 12 *1 & Overrun error \\
\hline & 14 & Format error \\
\hline & 15 & Execution status error \\
\hline & 18 & Frame length error \\
\hline Lower communications error & 70 & ID Tag communications error \\
\hline & 71 & Mismatch error \\
\hline & 72 & ID Tag non-existent error \\
\hline & 76 & Data error \\
\hline & 7A & Address error \\
\hline & 7C & Antenna error \\
\hline & 7D & Write protection error \\
\hline Memory error & 93 & Internal memory error \\
\hline
\end{tabular}
*1) Vertical parity errors, framing errors, and overrun errors do not occur for the V680-CHUD.


For details on each error, refer to Error Tables.

\section*{Section 4}

\section*{Functions}
\begin{tabular}{lc}
\(\triangle\) Hand-held Reader Writer Functions & 118 \\
\hline Multiple Area Control & 118 \\
Auto Command OFF Function & 118 \\
\(\square\) Write Protection Function & 119 \\
\hline\(\square\) ID Tag Service Life Detection & 121 \\
\hline\(\square\) Memory Check Function in ID Tag & 123 \\
\hline\(\square\) ID Tag Memory Error Correction & 124 \\
\hline
\end{tabular}

\section*{Hand－held Reader Writer Functions}

\section*{Multiple Area Control}

The Hand－held Reader Writer can read and write across several non－consecutive ID Tag memory areas（10 areas max．）at one time．To use this feature，the number of control areas is specified using the NUMBER OF CONTROL AREAS command．ASCII and hexadecimal can be used simultaneously for the one command control，but reading and writing cannot be performed simultaneously．

Example：Data in the Following 3 Areas are Read
\begin{tabular}{lll} 
Area（1）： & Address & 0010 （hex） \\
& Number of bytes & 05 bytes \\
& Code setting & ASCII \\
Area（2）： & Address & 0030 （hex） \\
& Number of bytes & 02 bytes \\
& Code setting & Hexadecimal \\
Area（3）： & Address & 0035 （hex） \\
& Number of bytes & 03 bytes \\
& Code setting & Hexadecimal
\end{tabular}


Command R DA3001005H003002H003503＊CR
Response RD 00 OMRON1234313233＊CR Area（1）Area（2）Area（3）

Refer to Command and Response Formats for more details on ASCII and hexadecimal．
冬気 0.61
Multiple area control can be used only for V600 commands and cannot be used with the V680．

\section*{Auto Command OFF Function}

If communications with the ID Tag do not begin within one minute（see note）after an auto command or button auto command is sent from the host device to the Hand－held Reader Writer after entering the ID Tag wait status，the Auto Command OFF function automatically aborts the auto command and returns an＂ID Tag non－existent＂error（error code 72）to the host device．When the Auto Command OFF function is not used，the auto command will not be aborted even if one minute passes after entering the ID Tag wait status．

This function is set using the BASIC FUNCTIONS SETTING（FN）command．

Note：The one－minute detection time limit before the timeout will occur can be changed by using the PARAMETER SET command（SP）．


\section*{Write Protection Function}

The write protection function prevents important data stored in the ID Tag, such as the product type and model, from being overwritten by other data and lost. Use the following method to set write protection after writing important data.

The write protection function can be enabled or disabled with the PARAMETER SET command (SP).


\section*{Setting Write Protection}

The write protection function is set in the four bytes of addresses 0000 through 0003 (hex) of the ID Tag's memory. The status of the most significant bit of address 0000 (hex) determines whether or not the write protection function is enabled for individual ID Tags.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Address (hex) & Bit & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0000 & Yes/No & \multicolumn{5}{|c|}{ Upper two digits of start address } \\
\hline 0001 & \multicolumn{5}{c|}{ Lower two digits of start address } \\
\hline 0002 & Upper two digits of end address \\
\hline 0003 & \multicolumn{5}{|c|}{ Lower two digits of end address } \\
\hline
\end{tabular}
- Write-protection Bit (most significant bit of address 0000 (hex))

1: Data is write-protected
0 : Data is not write-protected
- Write Protection Setting Area

Start address: 0000 to 7FFF(hex)
End address: 0000 to FFFF(hex)
- Settings to Write-protect Addresses 0006 through 07FF (hex)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Address (hex) & \multicolumn{4}{|c|}{Upper digit} & \multicolumn{4}{|c|}{Lower digit} \\
\hline \multirow[b]{2}{*}{0000} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \multicolumn{4}{|c|}{8} & \multicolumn{4}{|c|}{0} \\
\hline \multirow[b]{2}{*}{0001} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{6} \\
\hline \multirow{2}{*}{0002} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{7} \\
\hline \multirow[b]{2}{*}{0003} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & \multicolumn{4}{|c|}{F} & \multicolumn{4}{|c|}{F} \\
\hline
\end{tabular}
- Settings to Not Write-protect Addresses


The DATA FILL command will write data even to areas of the Tag for which write protection has been set. Confirm that there is no important data in the area being written before executing this command.

\section*{- Write Protection Setting Examples}
(1) Settings to Write-protect Addresses 0015 to 0120 (hex)
(Start address < End address)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Address \\
(hex)
\end{tabular} & Bit \\
\hline
\end{tabular} & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \multirow{9}{*}{(Hexadecimal)} \\
\hline \multirow[b]{2}{*}{0000} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline & \multicolumn{4}{|c|}{8} & \multicolumn{4}{|c|}{0} & \\
\hline \multirow[b]{2}{*}{0001} & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & \\
\hline & & & & & \multicolumn{4}{|c|}{5} & \\
\hline \multirow{2}{*}{0002} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
\hline & & & & & \multicolumn{4}{|c|}{1} & \\
\hline \multirow{2}{*}{0003} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
\hline & \multicolumn{4}{|c|}{2} & \multicolumn{4}{|c|}{0} & \\
\hline
\end{tabular}
(2) Settings to Write-protect 1 Byte
(Start address = End address)
Specify the same address for the start and end addresses.
(3) Settings when the End Address Is Greater Than the Final Address in the ID Tag
(End address > Last address in ID Tag)


The ID Tag memory area is allocated from address 0000 to 03E7 (hex) when using the V680-D1KP \(\square \square\). Therefore, the addresses up to 03E7 (hex) will be write-protected.
(4) Settings when the Start Address Is Greater Than the End Address

(Start address > End address)
The area between 0004 (hex) and the end address and the area between the start address and 03E7 (hex) are write-protected when using the V680\(\mathrm{D} 1 \mathrm{KP} \square \square\).

\section*{- Canceling Write Protection}
- Canceling Write Protection for an ID Tag

To cancel write protection, turn OFF the most significant bit of address 0000 (hex). The write protection will be cancelled and the start and end addresses that are set for 0000 to 0003 (hex) will be ignored.
- Canceling Write Protection for the Hand-held Reader Writer

Use the PARAMETER SET command (SP) to disable the write protection function.
If write protection is disabled for the Hand-held Reader Writer, even turning ON the most significant bit of address 0000 (hex) in the ID Tag will not enable write protection.

\section*{ID Tag Service Life Detection}

The OVERWRITE COUNT CONTROL command (MDS/MDL) can be used to determine whether the Tag overwrite limit has been exceeded. With the MDS command, the overwrite count is subtracted from the data in the user-specified overwrite count control area to determine whether the number of overwrites has been exceeded. The MDL command can also be used to determine whether the overwrite count (100,000 times) has been exceeded. The MDL command for ID tags with a maximum number of 100,000 overwrites.

\section*{MDS Command}

The overwrite count control area consists of 3 bytes from the start address. The decrement value from the overwrite count is written in this area, and if this value is 0 ( 00 hex) an end code 76 will be given as a warning. Therefore, to enable control of the number of overwrites, the maximum number of overwrites must be written to the overwrite count control area beforehand.


The user-specified number of overwrites can be set to up to \(16,700,000\). The number of overwrites in the specifications for EEPROM ID Tags, however, is 100,000 overwrites (0186A0 hex) at \(25^{\circ} \mathrm{C}\) max., so be sure to set the number of overwrites to 100,000 or lower The number of overwrites is controlled using hexadecimal values, and can be read using the READ command. If the control area data is already 0 , the control area value will not be refreshed, and only a warning will be returned as a response. When the refresh count is set as 00 hex, the count will not be updated, and only an overwrite count check will be performed.

For details on the command format, refer to OVERWRITE COUNT CONTROL (MD S/L). L L .67
- Example Using the OVERWRITE COUNT (MDS) Command

Example: When the three bytes from address 0010 (hex) are used as the overwrite count area.
1. The overwrite count initial value of 100,000 times is written in the control area.
"WTSTH100100186A0"
\begin{tabular}{l|l|} 
& \\
\cline { 2 - 2 } 0010 & 01 hex \\
\cline { 2 - 2 } & 86 hex \\
0011 & A0 hex \\
\cline { 2 - 3 } &
\end{tabular}
3. The accumulated count is 100,000 times. When "MDSTS1001000" is executed, it will be "MD7610" (overwrite count exceeded.)
\begin{tabular}{|c|c|} 
& \\
\cline { 2 - 2 } 0010 & O0 hex \\
\cline { 2 - 2 } 0011 & O0 hex \\
\cline { 2 - 3 } 0012 & O0 hex \\
\cline { 2 - 3 } &
\end{tabular}
2. Enter the overwrite count of 5 .
"MDSTS1001005"
A total of 5 times will be decremented from 100,000.
\begin{tabular}{l|c|} 
& \\
\cline { 2 - 2 } 0010 & 01 hex \\
\cline { 2 - 2 } 0011 & 86 hex \\
\cline { 2 - 2 } 0012 & 9B hex \\
\cline { 2 - 2 } &
\end{tabular}

\section*{MDL Command}

The overwrite count control area consists of 3 bytes from the start address. The decrement value from the overwrite count is written in this area, and if this value is 100,000 (0186A0 hex) or higher, an end code 76 will be given as a warning.
The number of overwrites is controlled using hexadecimal values, and can be read using the READ command.
If the control area data is already 100,000, the control area value will not be refreshed, and only a warning will be returned as a response. When the refresh count is set as 00 hex, the count will not be updated, and only an overwrite count check will be performed.


\footnotetext{
For details on the command format, refer to OVERWRITE COUNT CONTROL (MD S/L).
追p.67
}

\section*{- Example Using Overwrite Count Control Command (MDL)}

In the following example, the three bytes starting from address 0010 (hex) is the overwrite count control area.
1. The control area is cleared.
"WTSTH10010000000"
\begin{tabular}{|c|c|} 
& \\
\cline { 2 - 2 } 0010 & 00 hex \\
\cline { 2 - 2 } 0011 & 00 hex \\
\cline { 2 - 2 } 0012 & 00 hex \\
\cline { 2 - 3 } &
\end{tabular}
3. Enter the overwrite count of 5 .
"MDSTL1001005"
The total overwrite count becomes 9 times.

2. The overwrite count of 4 is entered.
"MDSTL1001004"
\begin{tabular}{|c|c|} 
& \\
\cline { 2 - 2 } 0010 & O0 hex \\
\cline { 2 - 2 } 0011 & 00 hex \\
\cline { 2 - 2 } 0012 & 04 hex \\
\cline { 2 - 3 } &
\end{tabular}
4. The accumulated count is 100,000 times.

When "MDSTL1001000" is executed, it will be "MD7610" (overwrite count exceeded.)


\section*{Memory Check Function in ID Tag}

A memory check can be made using the DATA CHECK command (MD C/K). A CRC (Cyclic Redundancy Check) code calculation, overwrite, and comparison are made, using the check block units specified by the user. The CRC code is calculated from the generated polynomial expression \(x^{16}+x^{12}+x^{5}+1\).

The calculation area is the portion of the check block specified by the start address and the number of bytes excluding the last two bytes. The last two bytes are the check code area. When check code write is specified (transaction code: K), the CRC of the calculation area data is calculated and written to the check code area. When data comparison is specified (transaction code: C), the CRC of the calculation area data is calculated and a comparison made with the check code area data. If they coincide, end code 00 is returned, indicating normal transmission, and if they do not coincide, end code 76 is returned as a warning.

For details on the command format, refer to DATA CHECK (MD C/K).


3. Execute MDSTC1001005
(comparison transaction).
The normal response MD0010 will be returned if the data coincides.

\section*{ID Tag Memory Error Correction}

The WRITE WITH ERROR CORRECTION command (QW) can be used to write an ID Tag memory check code and error correction code to the five bytes of memory after the write data. The READ WITH ERROR CORRECTION command (QR) performs a tag memory check and makes 1-bit memory error corrections.

When a 1-bit memory error is corrected, a warning that a 1-bit memory error occurred is given by returning an end code of 77 , and the normal data with the error corrected will be returned. When a 2bit or larger memory error is detected, a memory error (end code 76) saying that error correction was not possible is given and the read data will not be returned.


For details on the command format, refer to READ WITH ERROR CORRECTION (QR) and WRITE WITH ERROR CORRECTION (QW).

CHECK!
追p.70, p. 71
Example of Using the Memory Error Correction Function
The following example shows how to perform a data check for addresses 0010 to 0015 (hex).
1. Send the WRITE WITH ERROR CORRECTION (QR) command. Command:
QWSTH10010313233343536*[CR]
2. Write data is written to addresses 0010 to 0015 (hex). The ID Tag memory check code and a 5-byte error correction code are written to addresses 0016 to 001A (hex).

3. Send the READ WITH ERROR

CORRECTION (QW) command.
Command: QRSTH100100006*[CR]
- Response When Read Data Is Correct: QR0010313233343536*[CR]
- Response When a 1-bit Memory Error Is Corrected:
QR7710313233343536*[CR]
- Response When a 2-bit or Longer Memory

Error Is Detected:
QR76*[CR]

MEMO

\section*{Section 5}

\section*{Troubleshooting}
Error Tables ..... 128
Fatal Errors (Operation Stops) ..... 128
Non-fatal Errors (Operation Continues) ..... 128
Troubleshooting Flowchart ..... 129

\section*{Error Tables}

If an error occurs in the Hand-held Reader Writer, the operation indicator will light or flash red to indicate the type of error

\section*{Fatal Errors (Operation Stops)}

If a fatal error occurs, the operation indicator will be lit red and all operations of the Hand-held Reader Writer will stop until the power is turned OFF and then ON again.
Communications with the host will still be possible even if a memory error occurs.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Operation \\
indicator
\end{tabular}} & \multicolumn{1}{c|}{ Description } \\
\hline Hardware error & Lit red & Hand-held Reader Writer cannot be operated normally. \\
\hline Memory error & Lit red & The contents of the backup memory in the Hand-held Reader Writer is corrupted. \\
\hline
\end{tabular}

\section*{Non-fatal Errors (Operation Continues)}

If a non-fatal error occurs, the operation indicator will light or flash red (or flashing red) and an error code will be returned to the host device.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Operation \\
indicator
\end{tabular}} & \multicolumn{1}{c|}{ Description } \\
\hline Parity error & Flashing red & A parity error has occurred in communications with the host device. \\
\hline Framing error & Flashing red & A framing error has occurred in communications with the host device. \\
\hline Overrun error & Flashing red & An overrun error has occurred in communications with the host device. \\
\hline Format error & Flashing red & The command from the host device was incorrectly formatted. \\
\hline Frame length error & Flashing red & Command exceeding the maximum frame length was received. \\
\hline \begin{tabular}{l} 
ID Tag communications \\
error
\end{tabular} & Lit red & Communications with the ID Tag could not be performed correctly. \\
\hline Mismatch error & Lit red & Write control was not performed correctly. \\
\hline ID Tag non-existent error & Flashing red & \begin{tabular}{l} 
A command that was not an auto command was sent when the ID Tag was not in \\
the communications area. A command OFF occurred with the auto command.
\end{tabular} \\
\hline Address error & Lit red & An address that exceeded the ID Tag memory area was designated. \\
\hline Write protection error & Lit red & A write protection area was designated with a WRITE command. \\
\hline
\end{tabular}

\section*{Troubleshooting Flowchart}

If an error occurs, be sure to understand the conditions thoroughly, then accurately determine the likelihood of the error re-occurring, whether the problem is related to another device, and other factors causing the error, and refer to the following flowcharts for troubleshooting.


Troubleshooting

MEMO

\section*{Section 6 \\ Appendices}
\begin{tabular}{lc}
\(\triangle\) Specifications and Dimensions & 132 \\
\hline \begin{tabular}{l} 
ID Tag Memory Map
\end{tabular} & 144 \\
\hline \begin{tabular}{l} 
ID Tag Memory Capacities and Memory Types \\
(V680 Series)
\end{tabular} & 145 \\
\hline\(\square\) List of ASCII Characters & 146 \\
\hline\(\square\) Degree of Protection & 147 \\
\hline
\end{tabular}

\section*{Specifications and Dimensions}

\section*{General Specifications}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Item} & \multicolumn{4}{|c|}{Specification} \\
\hline & \multicolumn{2}{|c|}{V680-CHUD} & \multirow{2}{*}{V680-CH1D} & \multirow{2}{*}{V680-CH1D-PSI} \\
\hline & 0.8 m & 1.9 m & & \\
\hline Supply voltage & \multicolumn{4}{|l|}{5.0 VDC \(\pm 5 \%\) (at Reader Writer connector)} \\
\hline Ambient operating temperature & \multicolumn{4}{|l|}{0 to \(40^{\circ} \mathrm{C}\)} \\
\hline Ambient operating humidity & \multicolumn{4}{|l|}{35\% to 85\% (with no condensation)} \\
\hline Ambient storage temperature & \multicolumn{4}{|l|}{-25 to \(65^{\circ} \mathrm{C}\)} \\
\hline Ambient storage humidity & \multicolumn{4}{|l|}{35\% to 85\% (with no condensation)} \\
\hline Degree of protection & \multicolumn{4}{|l|}{IEC60529, IP63 (See note.)} \\
\hline Weight & \begin{tabular}{l}
Approx. 110 g \\
(with cables and connectors)
\end{tabular} & \begin{tabular}{l}
Approx. 140 g \\
(with cables and connectors)
\end{tabular} & \begin{tabular}{l}
Approx. 170 g \\
(with cables and connectors)
\end{tabular} & \begin{tabular}{l}
Approx. 120 g \\
(with cables and connectors)
\end{tabular} \\
\hline Current consumption & \multicolumn{4}{|l|}{500 mA max. (supply voltage: 5.0 V )} \\
\hline Material & \multicolumn{4}{|l|}{Case: ABS resin; Nameplate: PET resin} \\
\hline Vibration resistance & \multicolumn{4}{|l|}{10 to \(150 \mathrm{~Hz}, 0.2-\mathrm{mm}\) double amplitude at \(15 \mathrm{~m} / \mathrm{s}^{2}\) acceleration in 6 directions 10 times for 8 minutes each} \\
\hline Shock resistance & \multicolumn{4}{|l|}{\(150 \mathrm{~m} / \mathrm{s}^{2}\) (approx. 15G), 3 times each in 6 directions (up, down, right, left, forward, reverse)} \\
\hline Insulation resistance & \multicolumn{4}{|l|}{\(50 \mathrm{M} \Omega \mathrm{min}\). (at 500 VDC ) between connector terminals and case} \\
\hline Dielectric strength & \multicolumn{4}{|l|}{1,000 VAC, \(50 / 60 \mathrm{~Hz}\) for 1 min between connector terminals and case (leakage current: 1 mA max.)} \\
\hline Cable length & 0.8 m & 1.9 m & 2.5 m & 0.8 m \\
\hline
\end{tabular}

Note: This does not include the connector section. The main unit is not resistant to chemicals or oils.

\section*{Performance Specifications}
\begin{tabular}{|c|l|}
\hline Item & \\
\hline Diagnostic function & Checks for CPU errors, memory errors, and communications errors \\
\hline
\end{tabular}

\section*{V600-A22 Specifications}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \\
\hline Input voltage & 100 to 120 VAC at \(50 / 60 \mathrm{~Hz}\) \\
\hline Input current & 300 mA AC (load current: 2.0 A ) \\
\hline Output voltage & \(5 \mathrm{VDC} \pm 0.25 \mathrm{~V}\) \\
\hline Ambient operating temperature & 0 to \(40^{\circ} \mathrm{C}\) \\
\hline Ambient storage temperature & -20 to \(85^{\circ} \mathrm{C}\) (with no icing) \\
\hline Ambient storage humidity & \(5 \%\) to \(95 \%\) (with no condensation) \\
\hline Insulation resistance & \(100 \mathrm{M} \Omega\) min. (at 500 VDC ) between input terminals and output terminals \\
\hline Dielectric strength & \(2,000 \mathrm{VAC}\) for 1 min between input terminals and output terminals (leakage current: \(10 \mathrm{~mA} \mathrm{max)}\). \\
\hline Weight & \(\mathrm{Approx} 70 g\). \\
\hline Applicable standards & UL \\
\hline
\end{tabular}

\section*{Communications Specifications}

Host Communications Interface Specifications
V680-CHUD
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \\
\hline \begin{tabular}{l} 
Connectors (connector \\
connection status)
\end{tabular} & Series A plug \\
\hline USB specifications & Ver 1.1 \\
\hline Baud rate & Full speed (12 Mbps) \\
\hline Device class & COM class \\
\hline Vendor ID & Hexadecimal format [0590] \\
\hline Product ID & Hexadecimal format [0048] \\
\hline
\end{tabular}


Use the host communications interface as the COM port for the host device.

CHECK!

V680-CH1D, V680-CH1D-PSI
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ V680-CH1D } & \multicolumn{1}{c|}{ V680-CH1D-PSI } \\
\hline Connector & \begin{tabular}{l} 
D-Sub 9-pin (applicable to IBM PC/AT or compat- \\
ible) (See note 1.)
\end{tabular} & D-Sub 9-pin \\
\hline Standard compliance & RS-232C \\
\hline \begin{tabular}{l} 
Transmission line \\
connection
\end{tabular} & \(1: 1\) \\
\hline \begin{tabular}{l} 
Communications \\
method
\end{tabular} & Two-wire, half duplex \\
\hline \begin{tabular}{l} 
Synchronization \\
method
\end{tabular} & Asynchronous (stop bit: 1 or 2) (See note 2.) \\
\hline Baud rate & \(2,400,4,800,9,600,19,200\), 38,400 bps (See note 2.) \\
\hline Transmission code & 7-unit ASCII or 8-unit JIS (See note 2.) \\
\hline \begin{tabular}{l} 
Communications \\
control
\end{tabular} & \(1: 1\) \\
\hline Error detection & Vertical parity (even/odd/none) (See note 2.) \\
\hline
\end{tabular}

Note 1: For conversion to a 25-pin connector, use the SGC-X9P/25P-2 manufactured by Sunhayato, or an equivalent.
2: Set by a settings command.

\section*{Dimensions}

\section*{V680-CHUD}

(Unit: mm)

\section*{V680-CH1D}



Vinyl-insulated flat cable, 1.8 mm dia. \(\times 2\) Standard length: 0.19 m


\section*{V680-CH1D-PSI}


Vinyl-insulated round cable, 3.8 mm dia.

Standard length: 2.5 m


V600-A22


\section*{Transmission Specifications}

Transmission with the currently available V600-series ID Tags is possible.
Transmission Distances
\begin{tabular}{|c|c|c|}
\hline ID Tag & \multicolumn{2}{|r|}{Transmission distance} \\
\hline \multirow[t]{2}{*}{V680-D1KP52MT} & Read & 0 to 9.0 mm \\
\hline & Write & 0 to 7.5 mm \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
V680-D1KP52MT \\
Embedded in metal (iron)
\end{tabular}} & Read & 0 to 3.0 mm \\
\hline & Write & 0 to 2.5 mm \\
\hline \multirow[t]{2}{*}{V680-D1KP66MT} & Read & 0 to 21.0 mm \\
\hline & Write & 0 to 18.0 mm \\
\hline \multirow[t]{2}{*}{V680-D1KP66T} & Read & 0 to 27.0 mm \\
\hline & Write & 0 to 25.0 mm \\
\hline \multirow[t]{2}{*}{V680-D1KP58HT} & Read & 0 to 19.0 mm \\
\hline & Write & 0 to 17.0 mm \\
\hline \multirow[t]{2}{*}{V680-D2KF52M} & Read & 0 to 7.0 mm \\
\hline & Write & 0 to 7.0 mm \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
V680-D2KF52M \\
Embedded in metal (iron)
\end{tabular}} & Read & 0 to 2.0 mm \\
\hline & Write & 0 to 2.0 mm \\
\hline \multirow[t]{2}{*}{V680-D2KF67M} & Read & 0 to 22.0 mm \\
\hline & Write & 0 to 22.0 mm \\
\hline \multirow[t]{2}{*}{V680-D2KF67} & Read & 0 to 28.0 mm \\
\hline & Write & 0 to 28.0 mm \\
\hline \multirow[t]{2}{*}{V680-D8KF68} & Read & 0 to 32 mm \\
\hline & Write & 0 to 32 mm \\
\hline \multirow[t]{2}{*}{V680-D32KF68} & Read & 0 to 32 mm \\
\hline & Write & 0 to 32 mm \\
\hline
\end{tabular}

Note 1: ID Tag Installation Conditions
- V680-D1KP52MT Embedded in resin/Embedded in metal (iron)
- V680-D1KP66MT Metal (iron) on the back surface of the ID Tag.
- V680-D1KP66T Resin on the back surface of the ID Tag. ID Tag (no metal on back surface)
- V680-D1KP58HT Resin on the back surface of the ID Tag. ID Tag (no metal on back surface)
- V680-D2KF52M Embedded in resin/Embedded in metal (iron)
- V680-D2KF67M
- V680-D2KF67

Metal (iron) on the back surface of the ID Tag.
Resin on the back surface of the ID Tag. ID Tag (no metal on back surface)
- V680-D8KF68

Resin on the back surface of the ID Tag.
ID Tag (no metal on back surface)
- V680-D32KF68

Resin on the back surface of the ID Tag. ID Tag (no metal on back surface)

\section*{\(\square\) Transmission Range (Reference)}







\section*{Communications Time}

TAT represents the total time from when a command is first sent from the host device until a response is received. The transmission time represents the time required for communications between the Hand-held Reader Writer and the ID Tag, not including communications with the host device.


\section*{V680-D1KP52MT/V680-D1KP66MT/V680-D1KP66T/V680-D1KP58HT \\ - V680-CH1D TAT}


Note 1) In V680 mode, communications specifications for TAT data with the host device represent values with a baud rate of \(9,600 \mathrm{bps}\), a bit length of 8 bits, 1 stop bit, and even parity. In this example, characters are sent consecutively, with no spaces between them.
2) The number of bytes in the TAT data is the number for hexadecimal encoding.
- V680-CHUD TAT

- Transmission Time


Calculation Method
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Operation } & \multicolumn{1}{c|}{ Transmission time (ms) } \\
\hline Read & \(\mathrm{T}=1.2 \mathrm{~N}+27.3\) \\
\hline Write & \(\mathrm{T}=2.0 \mathrm{~N}+414.4\) \\
\hline
\end{tabular}

N : Number of processing data bytes

\section*{V680-D2KF52M/V680-D2KF67M/V680-D2KF67}

\section*{- V680-CH1D TAT}


Note 1) In V680 mode, communications specifications for TAT data with the host device represent values with a baud rate of \(9,600 \mathrm{bps}\), a bit length of 8 bits, 1 stop bit, and even parity. In this example, characters are sent consecutively, with no spaces between them.
2) The number of bytes in the TAT data is the number for hexadecimal encoding.

\section*{- V680-CHUD TAT}

- Transmission Time


\section*{Calculation Method}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Operation } & \multicolumn{1}{c|}{ Transmission time (ms) } \\
\hline Read & \(\mathrm{T}=1.1 \mathrm{~N}+26.1\) \\
\hline Write & \(\mathrm{T}=1.9 \mathrm{~N}+40.3\) \\
\hline
\end{tabular}

N : Number of processing data bytes

\section*{V680-D8KF68/V680-D32KF68}

\section*{- V680-CH1D TAT}


Note 1) In V680 mode, communications specifications for TAT data with the host device represent values with a baud rate of \(9,600 \mathrm{bps}\), a bit length of 8 bits, 1 stop bit, and even parity. In this example, characters are sent consecutively, with no spaces between them.
2) The number of bytes in the TAT data is the number for hexadecimal encoding.

\section*{- V680-CHUD TAT}

- Transmission Time


\section*{Calculation Method}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Operation } & \multicolumn{1}{c|}{ Transmission time (ms) } \\
\hline Read & \(\mathrm{T}=1.2 \mathrm{~N}+27.7\) \\
\hline Write & \(\mathrm{T}=1.5 \mathrm{~N}+41.4\) \\
\hline \multicolumn{2}{|c|}{\(\mathrm{~N}:\) Number of processing data bytes }
\end{tabular}

\section*{ID Tag Memory Map}

\section*{V680-D1KP \(\square \square\)}
\begin{tabular}{|c|c|}
\hline Address (hex) & - Data \\
\hline 0000 & 7 \\
\hline 0001 & \\
\hline 0002 & \\
\hline 0003 & - - User area \\
\hline : & \\
\hline : & \\
\hline 03 E 6 & \\
\hline 03E7 & J \\
\hline
\end{tabular}

V680-D2KF \(\square \square\)
\begin{tabular}{|c|c|}
\hline Address (hex) & - Data \\
\hline 0000 & \()\) \\
\hline 0001 & \\
\hline 0002 & \\
\hline 0003 & User area \\
\hline : & User area \\
\hline : & \\
\hline 07CE & \\
\hline 07CF & , \\
\hline
\end{tabular}

V680-D8KF68
\begin{tabular}{|c|c|}
\hline Address (hex) & Data \\
\hline 0000 & 7 \\
\hline 0001 & \\
\hline 0002 & \\
\hline 0003 & User area \\
\hline : & User area \\
\hline : & \\
\hline 1FFE & \\
\hline 1FFE & J \\
\hline & - 1 byte \\
\hline
\end{tabular}

V680-D32KF68
\begin{tabular}{|c|c|}
\hline Address (hex) & Data \\
\hline 0000 & 7 \\
\hline 0001 & \\
\hline 0002 & \\
\hline 0003 & \\
\hline : & -- User area \\
\hline : & \\
\hline 7FE6 & \\
\hline 7FE7 & J \\
\hline
\end{tabular}

For more information on ID Tag memory capacity and memory type, refer to ID Tag Memory Capacities and Memory Types (V680 Series).

\section*{ID Tag Memory Capacities and Memory Types (V680 Series)}
(As of April 2007)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c} 
Memory capacity \\
(user memory)
\end{tabular} & Memory type & \multicolumn{1}{c|}{ Life expectancy }
\end{tabular}

Note: For details, refer to the following manuals.
\begin{tabular}{|c|c|c|}
\hline Model & Manual name & Cat. No. \\
\hline \begin{tabular}{l}
V680-D1KP52MT \\
V680-D1KP66T \\
V680-D1KP66MT
\end{tabular} & V680-series RFID System User's Manual for Amplifiers, Antennas, and ID Tags (EEPROM model) & Z262 \\
\hline V680-D1KP58HT & V680-series Heat-resistive RFID System User's Manual & Z221 \\
\hline V680-D1KP58HTN & V680-series RFID System User's Manual for Amplifiers, Antennas, and ID Tags (EEPROM model) & Z262 \\
\hline \[
\begin{aligned}
& \text { V680-D2KF52M } \\
& \text { V680-D2KF67 } \\
& \text { V680-D2KF67M }
\end{aligned}
\] & V680-series RFID System User's Manual for Amplifiers, Antennas, and ID Tags (FRAM) & Z248 \\
\hline \begin{tabular}{|l|l|}
\hline V680-D8KF68 \\
\hline V680-D32KF68 \\
\hline
\end{tabular} & & \\
\hline
\end{tabular}

\section*{List of ASCII Characters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& \text { b8 to } \\
& \text { b5 }
\end{aligned}
\] & 0000 & 1001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1101 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111 \\
\hline b4 to b1 &  & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 0000 & 0 & NUL & TC7(DLE) & (SP) & 0 & @ & P & - & p & \multirow{16}{*}{\[
\begin{aligned}
& \text { D } \\
& \underset{U}{\mathbb{C}} \\
& \text { D } \\
& \text { D }
\end{aligned}
\]} & \multirow{16}{*}{} & \multirow{16}{*}{\begin{tabular}{l} 
D \\
D \\
등 \\
D \\
\hline 5
\end{tabular}} & \multirow{16}{*}{} & \multirow{16}{*}{} & \multirow{16}{*}{} & \multirow{16}{*}{\[
\begin{aligned}
& \text { D } \\
& \text { D } \\
& \text { © } \\
& \text { O } \\
& \hline 5
\end{aligned}
\]} & \multirow{16}{*}{} \\
\hline 0001 & 1 & \(\mathrm{TC}_{1}(\mathrm{SOH})\) & \(\mathrm{DC}_{1}\) & ! & 1 & A & Q & a & q & & & & & & & & \\
\hline 0010 & 2 & TC2(STX) & \(\mathrm{DC}_{2}\) & \({ }^{\prime}\) & 2 & B & R & b & \(r\) & & & & & & & & \\
\hline 0011 & 3 & TC3(ETX) & \(\mathrm{DC}_{3}\) & \# & 3 & C & S & c & s & & & & & & & & \\
\hline 0100 & 4 & TC4(EOT) & \(\mathrm{DC}_{4}\) & \$ & 4 & D & T & d & t & & & & & & & & \\
\hline 0101 & 5 & TC5(NEQ) & TC8 (NAK) & \% & 5 & E & U & e & \(u\) & & & & & & & & \\
\hline 0110 & 6 & TC6(ACK) & TC9(SYN) & \& & 6 & F & V & f & v & & & & & & & & \\
\hline 0111 & 7 & BEL & TC \({ }_{10}\) (ETB) & ' & 7 & G & W & g & w & & & & & & & & \\
\hline 1000 & 5 & FEo(BS) & CAN & \((\) & 8 & H & X & h & x & & & & & & & & \\
\hline 1001 & 9 & FE \({ }_{1}(\mathrm{HT})\) & EM & ) & 9 & I & Y & i & y & & & & & & & & \\
\hline 1010 & 10 & \(\mathrm{FE}_{2}(\mathrm{LF})\) & SUB & * & : & \(J\) & Z & j & z & & & & & & & & \\
\hline 1011 & 11 & \(\mathrm{FE}_{3}(\mathrm{VT})\) & ESC & + & ; & K & [ & k & \{ & & & & & & & & \\
\hline 1100 & 12 & \(\mathrm{FE}_{4}(\mathrm{FF})\) & IS4(FS) & , & < & L & \(\\) & 1 & 1 & & & & & & & & \\
\hline 1101 & 13 & FE5(CR) & \(\mathrm{IS}_{3}(\mathrm{GS})\) & - & = & M & ] & m & \} & & & & & & & & \\
\hline 1110 & 14 & SO & IS2(RS) & . & > & N & \(\wedge\) & n & - & & & & & & & & \\
\hline 1111 & 15 & SI & IS 1 (US) & / & ? & 0 & - & 0 & DEL & & & & & & & & \\
\hline
\end{tabular}

Note 1: The item in column 5, row 12 is a backlash ( \((\) ) in ASCII.
2: Do not use the undefined areas.

\section*{Degree of Protection}

International protection degrees (IP- \(\square \square\) ) are determined by the following tests. Be sure to check the sealing capability under the actual operating environment and conditions before actual use.

\section*{■ IEC (International Electrotechnical Commission) Standards (IEC60529}

November 1989)


Degree of Protection from Solid Materials
\begin{tabular}{|c|c|c|}
\hline Degree & \multicolumn{2}{|r|}{Protection} \\
\hline 0 & 「-〕 & No protection \\
\hline 1 &  & Protects against penetration of any solid object such as a hand that is 50 mm or more in diameter. \\
\hline 2 &  & Protects against penetration of any solid object, such as a finger, that is 12.5 mm or more in diameter. \\
\hline 3 &  & Protects against penetration of any solid object, such as a wire, that is 2.5 mm or more in diameter. \\
\hline 4 &  & Protects against penetration of any solid object, such as a wire, that is 1 mm or more in diameter. \\
\hline 5 & (x-7 & Protects against penetration of dust of a quantity that may cause malfunction or obstruct the safe operation of the product. \\
\hline 6 & an & Protects against penetration of all dust. \\
\hline
\end{tabular}

Degree of Protection Against Water
\begin{tabular}{|l|l|l|l|l|}
\hline Degree & \multicolumn{2}{|c|}{ Protection } & \multicolumn{1}{c|}{ Test method (with fresh water) } \\
\hline 0 & No protection & \begin{tabular}{l} 
Protection against water \\
drops
\end{tabular} & \begin{tabular}{l} 
Protects against vertical \\
drops of water towards the \\
product.
\end{tabular} & \begin{tabular}{l} 
Water is dropped vertically \\
towards the product from \\
the test machine for 10 \\
min.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Protection against water \\
drops
\end{tabular} & \begin{tabular}{l} 
Protects against drops of \\
water approaching at a maxi- \\
mum angle of \(15^{\circ}\) to the left, \\
right, \\
back, and front of vertical \\
towards the product.
\end{tabular} & \begin{tabular}{l} 
Water is dropped for 2.5 \\
min each (i.e., 10 min in \\
total) towards the product \\
inclined \(15^{\circ}\) to the left, \\
right, back, and front from \\
the test machine.
\end{tabular} \\
\hline 2
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Degree & \multicolumn{2}{|r|}{Protection} & Test method (with fresh water) \\
\hline 3 & Protection against sprinkled water
\(\square\) & Protects against sprinkled water approaching at a maximum angle of \(60^{\circ}\) from vertical towards the product. & Water is sprinkled at a maximum angle of \(60^{\circ}\) to the left and right from vertical for 10 min from the test machine. \\
\hline 4 & Protection against water spray & Protects against water spray approaching at any angle towards the product. & \begin{tabular}{l}
Water is sprayed at any angle towards the product for 10 min from the test machine. \\
Water rate is 0.07 liter/min per hole.
\end{tabular} \\
\hline 5 & Protection against water jet spray & Protects against water jet spray approaching at any angle towards the product. & \begin{tabular}{l}
Water is jet sprayed at any angle towards the product for 1 min per square meter for at least 3 min in total from the test machine. \\
Discharging nozzle: 6.3 dia.
\end{tabular} \\
\hline 6 & Protection against high pressure water jet spray & Protects against high-pressure water jet spray approaching at any angle towards the product. & Water is jet sprayed at any angle towards the product for 1 min per square meter for at least 3 min in total from the test machine. \\
\hline 7 & Protection underwater & Resists the penetration of water when the product is placed underwater at specified pressure for a specified time. & The product is placed 1 m deep in water (if the product is 850 mm max. in height) for 30 min . \\
\hline 8 & Protection underwater & Can be used continuously underwater. & The test method is determined by the manufacturer and user. \\
\hline
\end{tabular}

\section*{Oil resistance (OMRON in-house standard)}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Protection } \\
\hline Oil-resistant & No adverse affect from oil drops or oil spray approaching from any direction. \\
\hline Oil-proof & Protects against penetration of oil drops or oil spray approaching from any direction. \\
\hline
\end{tabular}

Note: This OMRON in-house standard confirms resistance to cutting and other oils. It is equivalent to the former JEM standard.

\section*{Revision History}

A manual revision code appears as a suffix to the catalog number at the bottom of the front and rear pages.

\begin{tabular}{|c|c|l|}
\hline Revision code & \multicolumn{1}{|c|}{ Date } & \multicolumn{1}{c|}{ Revised contents } \\
\hline 01 & November 2007 & Original production \\
\hline 02 & September 2008 & Added information on installing the USB driver for Vista. \\
\hline 03 & August 2010 & \begin{tabular}{l} 
Added information on the V680-D1KP53M/-D8KF67/-D8KF67M/-D1KP58HT. \\
Added information on international standards and certification. \\
Made other minor corrections.
\end{tabular} \\
\hline
\end{tabular}

\section*{OMRON Corporation Industrial Automation Company} Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters
OMRON EUROPE B.V.
Sensor Business Unit
Carl-Benz-Str. 4, D-71154 Nufringen, Germany
Tel: (49) 7032-811-0/Fax: (49) 7032-811-199
OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road \# 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC
One Commerce Drive Schaumburg,
IL 60173-5302 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

\section*{Authorized Distributor:}
© OMRON Corporation 2007 All Rights Reserved In the interest of product improvement
specifications are subject to change without notice.```


[^0]:    The Hand-held Reader Writer will read the data in the ID Tag when the Hand-held Reader Writer moves within the communications range. As a result, the operation indicator will light green and then turn OFF.

[^1]:    For details on the memory check，refer to Memory Check Function in ID Tag
    兰p．123
    СНЕСК！

